• Title/Summary/Keyword: carbon carbon composites

Search Result 2,135, Processing Time 0.03 seconds

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

Strengthening of concrete damaged by mechanical loading and elevated temperature

  • Ahmad, Hammad;Hameed, Rashid;Riaz, Muhammad Rizwan;Gillani, Asad Ali
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.645-658
    • /
    • 2018
  • Despite being one of the most abundantly used construction materials because of its exceptional properties, concrete is susceptible to deterioration and damage due to various factors particularly corrosion, improper loading, poor workmanship and design discrepancies, and as a result concrete structures require retrofitting and strengthening. In recent times, Fiber Reinforced Polymer (FRP) composites have substituted the conventional techniques of retrofitting and strengthening of damaged concrete. Most of the research studies related to concrete strengthening using FRP have been performed on undamaged test specimens. This contribution presents the results of an experimental study in which concrete specimens were damaged by mechanical loading and elevated temperature in laboratory prior to application of Carbon Fiber Reinforced Polymer (CFRP) sheets for strengthening. The test specimens prepared using concrete of target compressive strength of 28 MPa at 28 days were subjected to compressive and splitting tensile testing up to failure and the intact pieces of the failed specimens were collected for the purpose of repair. In order to induce damage as a result of elevated temperature, the concrete cylinders were subjected to $400^{\circ}C$ and $800^{\circ}C$ temperature for two hours duration. Concrete cylinders damaged under compressive and split tensile loads were re-cast using concrete and rich cement-sand mortar, respectively and then strengthened using CFRP wrap. Concrete cylinders damaged due to elevated temperature were also strengthened using CFRP wrap. Re-cast and strengthened concrete cylinders were tested in compression and splitting tension. The obtained results revealed that re-casting of specimens damaged by mechanical loadings using concrete & mortar, and then strengthened by single layer CFRP wrap exhibited strength even higher than their original values. In case of specimens damaged by elevated temperature, the results indicated that concrete strength is significantly dropped and strengthening using CFRP wrap made it possible to not only recover the lost strength but also resulted in concrete strength greater than the original value.

Prediction of Material Properties of Carbon Fiber Prepreg in the Laminated Composite Using Reverse Analysis with Dynamic Characteristics (동적 특성이 고려된 역해석를 이용한 적층 복합재료 내부의 탄소섬유 프리프레그의 물성 예측)

  • Hwang, Mun-Young;Kang, Lae-Hyong
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.177-184
    • /
    • 2019
  • If what the mechanical properties according to a layer have was found out by analyzing the already fabricated composite, it could be possible to develop the composite of the better performance than the existing products. In this study, we tried to calculate the mechanical properties of the inner prepreg lamina by applying the reverse design technique to the composite structure made by laminating prepregs. When the physical quantities obtained by the simple tensile test are used alone and the physical quantities obtained by the tensile test and the mode analysis are used at the same time, the results of this study show that the accuracy of the latter is higher Finally, the maximum error of $E_1$ predicted was 0.09% and the maximum error of predicted $E_2$ was 7%.

Study on the Thermal Degradation Behavior of FKM O-rings

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yoon, Yoo-Mi;Park, Sung Han;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • The degradation mechanism and physical properties of an FKM O-ring were observed with thermal aging in this experiment. From X-ray photoelectron spectroscopy (XPS) analysis, we could observe carbon (285 eV), fluoro (688 eV), and oxygen (531 eV) peaks. Before thermal aging, the concentration of fluoro atoms was 51.23%, which decreased to 8.29% after thermal aging. The concentration of oxygen atoms increased from 3.16% to 20.39%. Under thermal aging, the FKM O-ring exhibited debonding of the fluoro-bond by oxidation. Analysis of the C1s, O1s, and F1s peaks revealed that the degradation reaction usually occurred at the C-F, C-F2, and C-F3 bonds, and generated a carboxyl group (-COOH) by oxidation. Due to the debonding reaction and decreasing mobility, the glass transition temperature of the FKM O-ring increased from $-15.91^{\circ}C$ to $-13.79^{\circ}C$. From the intermittent CSR test, the initial sealing force was 2,149.6 N, which decreased to 1,156.2 N after thermal aging. Thus, under thermal aging, the sealing force decreased to 46.2%, compared with its initial state. This phenomenon was caused by the debonding reaction and decreasing mobility of the FKM O-ring. The S-S curve exhibited a 50% increase in modulus, with break at a low strain and stress state. This was also attributed to the decreasing mobility due to thermal aging degradation.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.

Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries (양극산화를 사용한 TiO2 마이크로/나노 구조체 제조 및 리튬 이온 전지 음극재로의 응용 연구)

  • Kim, Yong-Tae;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2021
  • With increasingly strict requirements for advanced energy storage devices in electric vehicles (EVs) and stationary energy storage systems (EES), the development of lithium-ion batteries (LIBs) with high power density and safety has become an urgent task. Because the performance of LIBs is determined primarily by the physicochemical characteristics of its electrode material, TiO2, owing to its excellent stability, high safety levels, and environmentally friendly properties, has received significant attention as an alternative material for the replacement of commercial carbon-based anode materials. In particular, self-organized TiO2 micro and nanostructures prepared by anodization have been intensively investigated as promising anode materials. In this review, the mechanism for the formation of anodic TiO2 nanotubes and microcones and the parameters that influence their morphology are described. Furthermore, recent developments in anodic TiO2-based composites as anode electrodes for LIBs to overcome the limitations of low conductivity and specific capacity are summarized.

Study on the Compositional Characteristics of the PCS Coating Layer by Curing Treatment for the Protection of Graphite Mold Surface (흑연 금형 표면 보호용 PCS 코팅층의 열경화에 의한 조성비 조절 특성 연구)

  • Kim, Kyoung-Ho;Lee, Yoonjoo;Shin, Yun-Ji;Jeong, Seong-Min;Lee, Myung-Hyun;Bae, Si-Young
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.6
    • /
    • pp.293-299
    • /
    • 2020
  • The characteristics of the polycarbosilane (PCS)-based composite ceramic layer was studied by controlling the curing temperature. The stress at the interface of the graphite and SiOC composite layer was evaluated v ia finite element analysis. As a result, the tensile stress was released as the carbon ratio of the SiC decreases. In experiment, the SiOC layers were coated on the VDR graphite block by dip-coating process. It was revealed that the composition of Si and C was effectively adjusted depending on the curing temperature. As the solution-based process is employed, the surface roughness was reduced for the appropriate PCS curing temperature. Hence, it is expected that the cured SiOC layer can be utilized to reduce cracking and peeling of SiC ceramic composites on graphite mold by improving the interfacial stress and surface roughness.

A Study on Growth of Graphene/metal Microwires and Their Electrical Properties (금속/그래핀 이중 구조 와이어의 합성 및 전기적 특성 연구)

  • Jeong, Minhee;Kim, Dongyeong;Rho, Hokyun;Shin, Han-Kyun;Lee, Hyo-Jong;Lee, Sang Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.67-71
    • /
    • 2021
  • In this study, graphene layer was grown on metal microwire using chemical vapor deposition. The difference of carbon solubility between copper and nickel resulted in the formation of mono-layer and multi-layer graphene were formed on the surfaces of copper and nickel microwires, respectively. During the growth of graphene at high temperature, copper and nickel were recrytallized and the grain size increased. The ampacity of graphene/copper microwire was improved by approximately 27%, 1.91×105 A/㎠, compared to pristine copper microwire. Similar to this behavior, the ampacity of multilayer graphene/nickel microwire was 4.41×104 A/㎠ which is about about 36% improved compared to the pure nickel microwire. The excellent electrical properties of graphene/metal composites are beneficial for supplying the electrical energy to the high-power electronic devices and equipment.

Comparison of Mechanical Properties on Helical/Hoop Hybrid Wound HNT Reinforced CFRP Pipe with Water Absorption Behavior (CFRP 파이프의 와인딩 적층 패턴 설계 및 HNT 나노입자 보강에 따른 수 환경에서의 기계적 물성 평가)

  • Choi, Ji-Su;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.174-179
    • /
    • 2021
  • Currently, fluid transfer steel pipes take a lot of time and expense to maintain all facilities due to new construction and painting or corrosion and aging. Therefore, this study was conducted for designing a CFRP pipe structure with high corrosion resistance and chemical resistance as a substitute for steel pipes. The helical/hoop pattern was cross-laminated to improve durability, and HNT was added to suppress the moisture absorption phenomenon of the epoxy. The HNT/CFRP pipe was manufactured by a filament winding process, and performed a mechanical property test, and a moisture absorption test in distilled water at 70℃. As a result, the highest bending strength was obtained when the hoop pattern was laminated with a thickness equivalent to 0.6% of the pipe. The 0.5 wt% HNT specimen had the highest moisture absorption resistance. Also, the delamination phenomenon at the interlayer interface was delayed, resulting in the lowest strength reduction rate.