• Title/Summary/Keyword: carbon capture utilization

Search Result 42, Processing Time 0.028 seconds

Brief Review on Carbon Dioxide Capture and Utilization Technology (CCU 기술 국내외 연구동향)

  • Kim, Hak Min;Nah, In Wook
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.589-595
    • /
    • 2019
  • The policies and researches for the reduction of greenhouses gases have been performed according to"Paris Agreement". Because South Korea is the $6^{th}$ biggest greenhouses gas emitter in the world, the Korea government has prepared the strategies for the reduction of greenhouse gases. The development of CCUS (Carbon Capture Utilization and Storage) technology is necessary to reduce greenhouse gases. Therefore, the CCUS has been studied by many contries in the world. In this work, the trends of CCUS technologies R&D has been shortly investigated.

Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide

  • Shim, Jae-Goo;Lee, Dong Woog;Lee, Ji Hyun;Kwak, No-Sang
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • Global warming due to greenhouse gases is an issue of great concern today. Fossil fuel power plants, especially coal-fired thermal power plants, are a major source of carbon dioxide emission. In this work, carbon capture and utilization using sodium hydroxide was studied experimentally. Application for flue gas of a coal-fired power plant is considered. Carbon dioxide, reacting with an aqueous solution of sodium hydroxide, could be converted to sodium bicarbonate ($NaHCO_3$). A bench-scale unit of a reactor system was designed for this experiment. The capture scale of the reactor system was 2 kg of carbon dioxide per day. The detailed operational condition could be determined. The purity of produced sodium bicarbonate was above 97% and the absorption rate of $CO_2$ was above 95% through the experiment using this reactor system. The results obtained in this experiment contain useful information for the construction and operation of a commercial-scale plant. Through this experiment, the possibility of carbon capture for coal power plants using sodium hydroxide could be confirmed.

Current status of CCU technology development (CCU 기술개발 국내외 기술동향)

  • Sim, Jae-Gu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.517-523
    • /
    • 2016
  • South Korea is the 8th biggest greenhouse gas emitter in the world due to its phenomenal economic growth based on manufacturing, and it is ranked first among OECD members for the rate of increase in emissions. Thus, the Korea government has voluntarily presented a reduction target and demonstrated global leadership. For the reduction of nation's GHG emission, importance of CCU(Carbon Capture and Utilization) along with CCS(Carbon Capture and Storage) technology development is increased. CCU technology is $CO_2$ utilization technology for the usage of $CO_2$ from flue gas and it can create a new economic value while reducing $CO_2$ emission. Therefore, with continued technology development, the number of application of CCU technology is increasing globally.

Patent Trend Analysis of Carbon Capture Storage Utilization (이산화탄소 포집·저장 기술 및 활용에 대한 디자인 고찰)

  • Yoon, June;Jin-Oh, Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.465-474
    • /
    • 2022
  • In order to achieve carbon neutrality, it is necessary to commercialize and popularize carbon dioxide capture technology, so the purpose of this study is to put forward the design of public facilities suitable for public environment. In the design direction of public facilities for carbon capture and environmental purification, the application of carbon capture technology in air, the application of carbon capture and adsorption materials, and carbon reduction recycling are selected for development. In order to achieve carbon neutrality, this study develops a new concept of public facility design which is different from the existing public facilities in public space. From this point of view, it has great enlightenment significance. Public facilities adopting carbon-neutral technology are environmentally friendly public facilities that conform to the times, and can be installed in parks, roads and other spaces. With the rest of citizens and the role of communities, it is expected to contribute to popularization and activation.

A Review on Nanostructured Carbon Nitrides for CO2 Capture (Carbon Nitrides 나노구조체를 이용한 CO2 포집 연구의 최신동향)

  • Ha, Seongjin;Lee, Dongki;Jin, Wenji;Park, Dae-Hwan
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.316-327
    • /
    • 2019
  • Carbon nitride has drawn broad interdisciplinary attention in diverse fields such as catalyst, energy storage, gas adsorption, biomedical sensing and even imaging. Intensive studies on carbon dioxide (CO2) capture using carbon nitride materials with various nanostructures have been reported since it is needed to actively remove CO2 from the atmosphere against climate change. This is mainly due to its tunable structural features, excellent physicochemical properties, and basic surface functionalities based on the presence of a large number of -NH or -NH2 groups so that the nanostructured carbon nitrides are considered as suitable materials for CO2 capture for future utilization as well. In this review, we summarize and highlight the recent progress in synthesis strategies of carbon nitride nanomaterials. Their superior CO2 adsorption capabilities are also discussed with the structural and textural features. An outlook on possible further advances in carbon nitride is also included.

Characterization of the Effects of Relative Humidity and Bed-depth on $CO_2$ Capture for Maximizing the Utilization Rate of Soda Lime Sorbent

  • Cho, Il-Hoon;Park, Guen-Il;Kim, Joon-Hyung;Hwang, Taek-Sung;Lee, Mi-Kyoung
    • Carbon letters
    • /
    • v.2 no.2
    • /
    • pp.113-119
    • /
    • 2001
  • The advanced method for $CO_2$capture is currently one of the most important environmental issues in worldwide and it is therefore necessary to have available technologies, which minimize the discharge of $CO_2$ including Carbon-14 from nuclear facilities into the atmosphere. A key aspect of this work is to provide the technically principal data required to improve a $CO_2$ removal system for the utilization of regenerative sorbent use, specifically include suggestions regarding its modified column design (parallel dual-bed assembly), stop-restart operation and the economic feasibility of sorbent use. The removal performance of soda lime and the effects of relative humidity (RH) and packing bed-depth (BD) on $CO_2$ removal were investigated. In a single-bed, it revealed that the utilization of soda lime for $CO_2$ removal at line velocity of 13 cm/sec and bed depth of 12 cm increased with the increased relative humidity up to 85%. However, in the parallel dual-bed assembly applied with the stop-restart operation, a maximum utilization rate of soda lime for $CO_2$ removal was obtained even at 55% of RH and 8 cm of BD, specifically the utilization rate of soda lime by using this $CO_2$ removal assembly was about two-fold superior to that in a single-bed.

  • PDF

Optimal Carbon Upcycling Technology Selection Method Considering Technology and Market (기술 및 시장을 고려한 최적 탄소자원화 기술 선정방법)

  • Ji Hyun Lee;Seong Jegarl;Jieun Jo
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.41-52
    • /
    • 2023
  • Various carbon upcycling technologies have been proposed and are under development to achieve Korea's carbon neutrality target. Many chemical reactions are under development through various chemical reaction pathways, and different technological maturity levels are shown for each country and company. In this situation, it is essential to establish investment decisions such as research funds and human resources allocation through technological and economic analysis for close commercialization technologies and basic technologies with low technology readiness levels (TRL). Therefore, in this study, the technology development priority for developing carbon upcycling items was selected according to the domestic Carbon Capture & Utilization (CCU) technology roadmap using the stakeholder selection tool released by EU CarbonNext. As a result of the analysis, the TRL level of Korea's major carbon upcycling technologies was analyzed to be lower than that of other carbon resource technologies, and it was considered desirable to invest in mineral carbonization technologies among various candidate technologies.