• Title/Summary/Keyword: carbon black loading

Search Result 47, Processing Time 0.025 seconds

Study on the Pt/C Catalyst Preparation for PAFC's Electrode (PAFC 전극용 카본블랙상 백금촉매 담지에 관한 연구)

  • Kim, Yeong-Woo;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.522-529
    • /
    • 1993
  • To raise the utilization of precious platinum currently used as catalyst for PAFC's electrode, it is very important to make fine particles of platinum. This study, for preparing highly dispersed platinum catalyst on carbon black, method. And then loading yield of platinum catalyst on carbon black and the particle size were investigated by DCP and XRD and/or TEM respectively. The colloid method by which platinum particle size could be reduced as small as below $30{\AA}$ showed the best result among them, and the loading yield of platinum catalyst on carbon black was above 99%.

  • PDF

Comparison study between recovered carbon black and commercial carbon black filled epoxy conductive materials

  • Huai M. Ooi;Pei L. Teh;Cheow K. Yeoh;Wee C. Wong;Chong H. Yew;Xue Y. Lim;Kai K. Yeoh;Nor A. Abdul Rahim;Chun H. Voon
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.221-232
    • /
    • 2024
  • Waste tire management and recycling have grown to be significant issues because they bring up a global environmental concern. Thus, turning recycled waste tires into useful products may help tackle the environmental issue. This research aims to study and compare the effect of recycled carbon black (rCB) and commercial carbon black (CB) at certain 15 vol. % of filler loading on the mechanical, thermal, morphology and electrical properties of epoxy/CB composites. For this project, epoxy resin, diethyltoluenediamine (DETDA), recovered carbon black (rCB) and commercial carbon black (CB) graded N330, N550, N660 and N774 were mixed and compared accordingly to the formulation determined. The CB content was dispersed in the epoxy matrix using the mechanical mixing technique. The distribution and dispersion of CB in the epoxy matrix affect the characteristics of the conductive composites. rCB content at 15 vol% was selected at fixed content for comparison purposes due to the optimum value in electrical conductivity results. The flexural strength results followed the sequence of rCB>N774>N660>N550>N330. As for electrical conductivity results, epoxy/N330 exhibited the highest conductivity value, while the others achieved a magnitude of X10-3 due to the highest external surface area of N330. In terms of thermal stability, epoxy/N330 and epoxy/N774 were slightly more stable than epoxy/rCB.

Cause of Fuel Leakage from the Inner Piston Packing of Afterburner Fuel Pump in an Aircraft J85-GE-21 Turbojet Engine (전투기 J85-GE-21 터보제트 엔진 후기 연소기 연료펌프의 내부 피스톤 패킹 연료 누출 원인)

  • Kim, Ik-Sik;Hwang, Young-Ha;Sohn, Kyung-Suk;Lee, Jung-Hun;Kim, Sung-Uk
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • Most of military supersonic aircraft use an afterburner. It plays an important role in performing unusual duties for supersonic flight, takeoff, and combat situations. Recently, repetitive fuel leakage from the inner piston packing rubber of afterburner fuel pump in an aircraft J85-GE-21 turbojet engine has happened. These failures have only happened in one manufacturer's parts of two manufacturers. Thus, the cause of these failures was investigated through the comparative analysis for both the failed and the unfailed with two different manufacturers using various analysis methods. The failure analysis was performed using analysis methods such as swelling or swelling ratio, total sulfur content, polymer identification, loading and surface area of carbon black, and hardness. Consequently, the main cause of this failure was identified to be insufficient loading of carbon black as a reinforcing agent, together with small surface area of carbon black and somewhat low sulfur content.

The Calibration Method of Time Resolved Laser Induced Incandescence Using Carbon Black Particles for the Soot Measurement at Exhaust Tail Pipe in Engine (엔진 배기단 적용을 위한 Time Resolved Laser Induced Icandescence (TIRE-LII) 신호의 보정 : 카본 입자 이용)

  • Oh Kwang Chul;Kim Deok Jin;Lee Chun Hwan;Lee Chun Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1335-1343
    • /
    • 2005
  • The calibration technique of Time Resolved Laser Induced Incandescence was investigated both experimentally and numerically by using standard-sized carbon black particles for the instantaneous soot measurement at exhaust tail pipe in engine. The carbon black particles (19nm, 25nm, 45nm and 58nm) used in this study are similar, though not identical, to soot particle generated from flame not only in morphology but also in micro-structure. The amount of soot loading in flow was controled by a diluted gas (nitrogen) and was measured by the gravimetric method at exhaust pipe in calibrator. The successful calibrations of primary particle size and soot mass fraction were carried out at the range from 19nm to 58nm and from $0.25mg/m^3$ to $37mg/m^3$ respectively. And based on these results the numerical simulation of LII signal was tuned and the effect of an exhaust temperature variation on the decay rate of LII signal was corrected.

Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF

Synergistic effects of CNT and CB inclusion on the piezoresistive sensing behaviors of cementitious composites blended with fly ash

  • Jang, Daeik;Yoon, H.N.;Yang, Beomjoo;Seo, Joonho;Farooq, Shah Z.;Lee, H.K.
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.351-359
    • /
    • 2022
  • The present study investigated the synergistic effects of carbon nanotube (CNT) and carbon black (CB) inclusions on the piezoresistive sensing behaviors of cementitious composites. Four different CNT and CB combinations were considered to form different conductive networks in the binder material composed of Portland cement and fly ash. The cement was substituted with fly ash at levels of 0 or 50% by the mass of binder. The specimens were cured up to 100 days to observe the variations of the electrical characteristics with hydration progress, and the piezoresistive sensing behaviors of the specimens were measured under cyclic loading tests. The fabricated specimens were additionally evaluated with flowability, resistivity and cyclic loading tests, and morphological analysis. The scanning electron microscopy and energy disperse X-ray spectroscopy test results indicated that CNT and CB inclusion induced synergistic formations of electrically conductive networks, which led to an improvement of piezoresistive sensing behaviors. Moreover, the incorporation of fly ash having Fe3+ components decreased the electrical resistivity, improving both the linearity of fractional changes in the electrical resistivity and reproducibility expressed as R2 under cyclic loading conditions.

The Effects of Cure System on Vulcanization Reaction Constant and Physical Properties of Rubber Compounds (가황시스템 변화가 배합고무의 가황반응속도 및 물리적 특성에 미치는 영향)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.419-426
    • /
    • 1999
  • In this study, the reaction rate constant, activation energy, total crosslinking density, elastic constant, cure properties ($t_5,\;t_{90}$), modulus, and abrasion resistance of rubber compounds were investigated as a function of cure temperatures, cure systems and reinforcing filler loadings. Reaction rate constants showed strong dependence on thc carbon black loading, cure temperature and cure system, and increased sharply with increasing the reaction temperatures. The lowest activation energy was obtained in the efficient cure (EC) system which corresponds to the high level of sulfur to accelerator ratio, and the activation energy was decreased with decreasing the carbon black loadings. The change of carbon black loadings directly affects the modulus and abrasion resistance, but the change of cure system showed various effects on the rubber compounds. Increased carbon black loadings showed the high modulus, improved abrasion resistance and short scorch time but decrease in crosslinking density and elastic constant. Higher crosslinking density and elastic constant were shown in the EC cure system regardless of carbon black loadings, but scorch timc ($t_5$) was not affected by the change of the ratio of sulfur to accelerator. Rapid optimum cure time ($t_{90}$) were showen in the EC cure system. Also, the equivalent cure curve coefficient of rubber compound was 0.96 for conventional cure (CC) system, and 0.94 for semi-efficient cure (SEC) and EC system regardless carbon black loadings. As regarding the abrasion resistance, wear volume showed the logarithmic increase for the loaded weight.

  • PDF

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis (친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성)

  • DAI, GUANXIA;LU, LIXIN;LEE, JAEYOUNG;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Preparation and Characterization of Pt-Ni Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis by Spontaneous Reduction Reaction (자발적 환원반응에 의한 음이온 교환막 수전해용 Pt-Ni 나노 촉매 제조 및 특성)

  • ZHANG, PENGFEI;LEE, JAEYOUNG;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.202-208
    • /
    • 2022
  • Pt-Ni nanocatalysts were loaded on carbon black by spontaneous reduction reaction of platinum (II) acetylacetonate and nickel (II) acetylacetonate, and they were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), energy dispersive x-ray analyzer (EDS), BET surface area and fuel cell test station. The distribution of the Pt and Ni nanoparticles was observed by TEM, and the loading weight of Pt-Ni nanocatalysts on the carbon black was measured by TGA. The elemental ratio of Pt and Ni was estimated by EDS. It was found that the loading weight of Pt-Ni nanoparticles was 5.54 wt%, and the elemental ratio of Pt and Ni was 0.48:0.35. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

Mechanical and Tribological Properties of Si-SiC-Graphite Composites (Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF