• Title/Summary/Keyword: carbon Fibers

Search Result 844, Processing Time 0.033 seconds

Effect of moisture on interlaminar fracture toughness of CFRP composites (CFRP 복합재료의 층간파괴인성치에 미치는 수분의 영향)

  • 김형진;김종훈;고성위;김엄기
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 1996
  • Polymeric composites can be subjected to a wide variety of environmemtal conditions in practical use. One of most important conditions to be considered in the stuctural design using such materials is the miisture envirnment. Thus the moisture effect on interlaminar fracture toughness $G_IC$ and $G_IIC$ of CFRP(carbon fiber reinforced plastic) composed of carbon fibers and epoxy resin is studied in this paper. Specimens were first processed in 25, 50, $80^{\circ}C$ flesh water and $25^{\circ}C$ sea water for various periods of time. After that, the water absorption and fracture toughness tests were performed under laboratory atmosphere. As result, the specimen processed in $80^{\circ}C$ flesh water indicates the highest misture absorbing capability, the second in $50^{\circ}C$ flesh water, the third in $25^{\circ}C$ sea water, and the specimen in $25^{\circ}C$ flesh water does the lowest. The interlaminar fracture toughness $G_IC$ increases, approaches to the maximum, and decreases as the immersion time increases. In case of interlaminar $G_IIC$, the value of the specimen processed in $80^{\circ}C$ flesh water turns out to be higher than others. In addition, the scanning electron micrographs(SEM) of fracture surfaces were also examined in order to explain the mechanism of fracture.

  • PDF

Improved conductivity of transparent single-wall carbon nanotube-based thin films on glass

  • Min, Hyeong-Seop;Choe, Won-Guk;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • 차세대 디스플레이용 전극 재료는 투명하면서도 낮은 저항값을 가져야 하는 투명 전극 재료로 금속, 금속산화물, 전도성 고분자, 탄소재료 등을 들 수 있다. 금속재료는 전도도는 우수하지만, 낮은 투과도로 투명전극 재료로 적절하지 않고, 대표적인 금속산화물 재료인 indium tin oxide (ITO)의 경우, 우수한 투과성과 낮은 면저항을 기반으로 차세대 디스플레이용 전극으로 현재 사용되고 있다. 하지만 ITO 박막은 휘거나 접을 때 기계적 안정성이 취약한 문제점을 나타내고 있다. 이러한 문제점을 극복하기 위해 전도성과 탄성계수가 높고, 저온에서 대면적 공정이 가능한 CNT을 투명 박막 전극 연구가 활발히 진행되고 있다. 하지만 투명전극 제조시, 탄소 나노튜브 간의 van der waals 인력에 의한 응집 현상으로 인한 분산의 불안정성과 분산제 사용으로 인하여 탄소 나노튜브 박막전극의 전기적, 광학적 특성이 저하를 야기한다. 이에 본 실험에서는 아크 방전 공정으로 합성한 SWCNT 분산액을 사용하여 spray coating 방법으로 glass 위에 박막을 형성하였다. SWCNT 투명 박막 전극 위에 DC sputtering을 이용하여 얇은Ni를 도포한 후, $450{\sim}500^{\circ}C$, ethylene gas 분위기의 thermal CVD방법으로 Carbon NanoFibers (CNFs)를 생성시킴과 동시에 분산제를 burning out하였다. CNF 성장 전후의 투명 박막의 전기적 특성은 four point probe를 이용하여 면저항과 UV-vis 장비를 이용하여 가시광선 영역에서의 광학적 투과도를 측정 비교하였다.

  • PDF

Removal of Uranium Ions in Lagoon Waste by Electrosorption

  • Jung, Chong-Hun;Won, Hui-Jun;Park, Wang-Kyu;Kim, Gye-Nam;Oh, Won-Zin;Hwang, Sung-Tai;Park, Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.701-706
    • /
    • 2003
  • A study on the electrosorption of U(VI) onto porous activated carbon fibers (ACFs) was performed to treat uranium-containing lagoon sludge. Effective U(Ⅵ) removal is accomplished when a negative potential is applied to the activated carbon fiber(ACF) electrode. For a feed concentration of 100mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1mg/L. The adsorbed uranium could be deserted from the ACF by passing a 1M NaCl solution through the cell and applying a positive potential onto the electrode. The regeneration of ACF from the cycling experiments was confirmed.

  • PDF

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

Clean Technologies using Surfactant for Supercritical Carbon dioxide (초임계 이산화탄소용 계면활성제를 이용한 청정 기술)

  • Pack, Ji Won;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.149-158
    • /
    • 2004
  • Supercritical carbon dioxide is often promoted as an environmentally friendly solvent having useful properties for a wide range of technical and chemical processes. But the limited ability of $CO_2$ to dissolve polar or non-volatile compounds represents a major drawback in many processes, because the key components will often fail to form homogeneous solution under practical conditions. The design of $CO_2$ soluble ($CO_2$-philic) surfactant to aid this process is therefore paramount in these areas, which has advanced the "greening" of demanding yet important applications in dyeing, cleaning of fibers and texiles, polymerization and polymer processing, photoresist removal, electroplating, and chemical synthesis.

  • PDF

Analysis of Shear Characteristics of Angle-Ply Laminates with Non-woven Tissue by FEM (FEM에 의한 부직포 삽입 예각 적층판의 전단특성 해석)

  • 이승환;정성균
    • Korean Journal of Crystallography
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2002
  • The interlaminar problems near the free edge of composite laminates are analyzed in this paper. CFRP specimen ([+40/-40]s) and interleaved specimen ([+40//-40]s) with non-woven carbon tissue (NWCT) are discussed under tensile loading condition. The symbol “//”means that the NWCT is located between the CFRP interfaces. The NWCT has carbon short fibers which are discretely distributed with the in-plane random orientation. It was reported/sup 3)/ that the Mode Ⅱ interlaminar fracture toughness of CFRP laminates with NWCT is increased largely and the Mode I interlaminar fracture toughness is not changed significantly. Mode Ⅲ interlaminar fracture toughness is also an important factor in composite structures. But it is not easy to experimentally investigate the Mode Ⅲ interlaminar fracture toughness. The objective of this work is to study the effect of the NWCT and to fundamentally understand the Mode Ⅲ interlaminar shear characteristics of laminated composites with NWCT in the vicinity of a free edge by using finite element method analysis.

Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression

  • Razavian, Leila;Naghipour, Morteza;Shariati, Mahdi;Safa, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.145-156
    • /
    • 2020
  • There are separate merits and demerits to wood and steel. The combination of wood and steel as a compound section is able to improve the properties of both and ultimately increase their final bearing capacity. The composite cross-section made of steel and wood has higher hardness while showing more ductility and the local buckling of steel is delayed or completely prevented. The purpose of this study is to investigate the behavior of composite columns enclosed in wooden logs and the hollow sections of steel that will be examined in a laboratory environment under the axial load to determine the final bearing capacity and sample deformation. In terms of methodology, steel sheet and carbon fiber reinforced polymer sheet (FRP) are tested to construct hollow rectangular sections and reinforce timber. Besides, the method of connecting hollow sections and timber including glue and screw has been also investigated. As a result, timber lumber enclosed with carbon fiber-reinforced polymer sheets in which fibers are horizontally located at 90° are more resistant with better ductility.

Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Strengthening performance of Reinforced Concrete Shear Columns - (Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - 철근콘크리트 전단기둥의 보강성능 평가 -)

  • Lee, Kang-Seok;Byeon, In-Hee;Son, Young-Sun;Lee, Moon-Sung;Li, Cheng-Hao;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.137-140
    • /
    • 2006
  • In this study, a seismic performance of reinforced concrete columns strengthened by a sprayed fiber reinforced polymer (SFRP) is investigated. For this purpose, six column specimens approximately scaled into 2/3, are designed and tested under a constant axial load, 10% of the nominal axial strength of column, and pseudo-static reversed cyclic lateral loading system. Four specimens are strengthened by Sprayed FRP using different combinations of short fibers (carbon or glass fiber) and resins (epoxy or vinyl esther). For comparison, the test investigated in this study also includes a specimen strengthened using carbon fiber reinforced polymer (CFRP), and also a control specimen without strengthening. The results revealed that specimens strengthened using SFRP showed a improved structure behavior, compared to control specimen, in terms of strength, ductility, lateral drift capacity, and energy-absorbtion capacity. In addition, compared to the specimen strengthened using CFRP, Sprayed FRP-strengthened specimens reasonably showed a equivalent seismic performance.

  • PDF

MODELLING OF PYROLYSIS PROCESSES OF POLYACRYLONITRILE

  • Lipanov, A.M.;Kodolov, V.I.;Ovchinnikova, L.N.;Savinsky, S.S.;Khokhriakov, N.V.;Sarakula, V.L.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.112-119
    • /
    • 1997
  • The modelling of carbon substances obtaining, for instance, carbon fibers which have high fire resistance, has been realized on the example of the polyacrylonitrile pyrolysis modelling. The pyrolysis is considered as a double step process when the formation of a liquid phase and the oxidation of substance are excluded. Three main reactions are considered: a) with the evolution of ammonia; b) with the evolution of hydrogen cyanide; c) with the evolution of hydrogen. Reactions b) and c) are sequential, and a) and b) are parallel. The problem is formulated as one-dimensional. The equations of energy, masses or concentrations, porosity and thermal conductivity are proposed. The mathematical model of the carbonization process is designed using tile kinetic characteristics of the above reactions and the thermodynamic parameters of reagents and products in these reactions. The equations received are calculated by Runge-Cutta method and by Adams method of the fourth order accuracy.

  • PDF

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.