• Title/Summary/Keyword: carbohydrate active enzyme

Search Result 30, Processing Time 0.025 seconds

Increased Alcohol Decomposition Efficacy of Hoveina dulcis Extract by Carbohydrate-Hydrolyzing Enzymes (당 분해 효소를 이용한 헛개나무 열매 추출물이 알코올 분해에 미치는 영향)

  • Lee, Kyung-Seok;Kim, Ae-Jung;Lee, Ki-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.4
    • /
    • pp.473-479
    • /
    • 2012
  • In this study, increased alcohol decomposition efficacy (ADH) of Hoveina dulcis extract by Carbohydrate-Hydrolyzing Enzymes was investigated. Carbohydrate decomposition enzymes such as Maxinvert (Invertase), Optidex L-400 (Glucoamylase) and Rohament CL (Cellulase & Pectinase) were added to Hoveina dulcis extract at different concentrations (0.01, 0.05, 0.1, 0.5 and 1%) for 48 hrs, after which samples were taken every 6 hrs for determination of ADH activity. As the enzyme concentration became higher, ADH activity also increased. Especially, the addition of 1% Rohament CL increased enzyme activity to 76% at 30 hrs incubation, after which the increase in activity stopped. In the rat and human body experiment, enzymatic decomposition of Hovenia dulcis extract by addition of 1% Rohament CL was also effective in decreasing serum alcohol concentration and respiration. Especially, in the early stage after alcohol consumption, the efficacy of enzyme treatment of Hovenia dulcis extract was more effective. These results show that if the glycoside forms of active compounds such as flavonols in Hovenia dulcis extract are converted into aglycone forms, alcohol decomposition capability can be enhanced.

Cloning and Characterization of a Multidomain GH10 Xylanase from Paenibacillus sp. DG-22

  • Lee, Sun Hwa;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1525-1535
    • /
    • 2014
  • The xynC gene, which encodes high molecular weight xylanase from Paenibacillus sp. DG-22, was cloned and expressed in Escherichia coli, and its nucleotide sequence was determined. The xynC gene comprised a 4,419bp open reading frame encoding 1,472 amino acid residues, including a 27 amino acid signal sequence. Sequence analysis indicated that XynC is a multidomain enzyme composed of two family 4_9 carbohydrate-binding modules (CBMs), a catalytic domain of family 10 glycosyl hydrolases, a family 9 CBM, and three S-layer homologous domains. Recombinant XynC was purified to homogeneity by heat treatment, followed by Avicel affinity chromatography. SDS-PAGE and zymogram analysis of the purified enzyme identified three active truncated xylanase species. Protein sequencing of these truncated proteins showed that all had identical N-terminal sequences. In the protein characterization, recombinant XynC exhibited optimal activity at pH 6.5 and $65^{\circ}C$ and remained stable at neutral to alkaline pH (pH 6.0-10.0). The xylanase activity of recombinant XynC was strongly inhibited by 1 mM $Cu^{2+}$ and $Hg^{2+}$, whereas it was noticeably enhanced by 10 mM dithiothreitol. The enzyme exhibited strong activity towards xylans, including beechwood xylan and arabinoxylan, whereas it showed no cellulase activity. The hydrolyzed product patterns of birchwood xylan and xylooligosaccharides by thin-layer chromatography confirmed XynC as an endoxylanase.

Comparative Genomics Uncovers the Genetic Diversity and Synthetic Biology of Secondary Metabolite Production of Trametes

  • Zhang, Yan;Wang, Jingjing;Yajun, Chen;Zhou, Minghui;Wang, Wei;Geng, Ming;Xu, Decong;Xu, Zhongdong
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.104-114
    • /
    • 2020
  • The carbohydrate-active enzyme (CAZyme) genes of Trametes contribute to polysaccharide degradation. However, the comprehensive analysis of the composition of CAZymes and the biosynthetic gene clusters (BGCs) of Trametes remain unclear. Here, we conducted comparative analysis, detected the CAZyme genes, and predicted the BGCs for nine Trametes strains. Among the 82,053 homologous clusters obtained for Trametes, we identified 8518 core genes, 60,441 accessory genes, and 13,094 specific genes. A large proportion of CAZyme genes were cataloged into glycoside hydrolases, glycosyltransferases, and carbohydrate esterases. The predicted BGCs of Trametes were divided into six strategies, and the nine Trametes strains harbored 47.78 BGCs on average. Our study revealed that Trametes exhibits an open pan-genome structure. These findings provide insights into the genetic diversity and explored the synthetic biology of secondary metabolite production for Trametes.

Acidophilic Tannase from Marine Aspergillus awamori BTMFW032

  • Beena, P.S.;Soorej, M.B.;Elyas, K.K.;Sarita, G. Bhat;Chandrasekaran, M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1403-1414
    • /
    • 2010
  • Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as an extracellular enzyme under submerged culture conditions. Enzymes with a specific activity of 2,761.89 IU/mg protein, a final yield of 0.51%, and a purification fold of 6.32 were obtained after purification through to homogeneity, by ultrafiltration and gel filtration. SDS-PAGE analyses, under nonreducing and reducing conditions, yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating the presence of six identical monomers. A pI of 4.4 and a carbohydrate content of 8.02% were observed in the enzyme. The optimal temperature was found to be $30^{\circ}C$, although the enzyme was active in the range of $5-80^{\circ}C$. Two pH optima, pH 2 and pH 8, were recorded, although the enzyme was instable at a pH of 8, but stable at a pH of 2.0 for 24 h. Methylgallate recorded maximal affinity, and $K_m$ and $V_{max}$ were recorded at $1.9{\times}10^{-3}$M and 830 ${\mu}Mol$/min, respectively. The impacts of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on tannase activity were determined in order to establish the novel characteristics of the enzyme. The gene encoding tannase, isolated from A. awamori, was found to be 1.232 kb, and nucleic acid sequence analysis revealed an open reading frame consisting of 1,122 bp (374 amino acids) of one stretch in the -1 strand. In silico analyses of gene sequences, and a comparison with reported sequences of other species of Aspergillus, indicate that the acidophilic tannase from marine A. awamori differs from that of other reported species.

Studies on the Preparation of Weanling Food from Soybean (Part 1) -Conditions for the digestion of soybean protein by Eezyme from Aspergillus- (대두를 이용한 이유식 제조에 관한 연구(제 1보) -효소를 이용한 대두단백질 분해 적정 조건결정 및 조제에 관하여-)

  • Kim, Z.U.;Cho, M.J.
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 1970
  • In order to prepare digested Protein source for the Weanling Food from soybean, an attempt was made to decompose steamed soybean protein to amino acids and peptides by protease and cellulase produced from Aspergillus niger and Aspergillus sojae. In this paper, the optimum condition for digestion of soybean protein were studied and also investigated the effects of decolorization of it. As the results, followings were obtained; 1. As steaming conditions, a treatment under 15 lb of pressure and 10 minutes of heating shows most effective. 2. The optimum pH of Asp, sojae enzyme for the digestion of soybean protein is 6.0, while that of Asp. niger enzyme is 4.4. In successievly-decomposing with Asp. sojae and Asp. niger, it shows the most effective on ratio of water-soluble-nitrogen to total nitrogen and amino-nitrogen to total nitrogen than any other separate treatments. 3. The suitable amount of the enzyme solution to that of the soybean substrate paste, in volume, is 1 : 2. 4. Digestion ratio of soybean protein indicates the gradual and steady effects of increasing time of digestion, but 8 hour-digestion regarding to putrefaction was suitable. 5. The most effective decolorization was successively passed on culumns of active carbon and anion exchanger (Dowex 2-x-8) at room temperature. In separate treatments, the effective order of decolorization was as follows; (Dowex 2-x-8)>Active carborn>Amberite IR-120 6. The powder type of the soy protein source obtained by concentration below $60^{\circ}C$ contains 12.51% of moisture, 66.31% of protein, 4.25% of fat, 12.75% of carbohydrate, 4.18% of ash.

  • PDF

Metagenomic Analysis of the Fecal Microbiomes of Wild Asian Elephants Reveals Microflora and Enzymes that Mainly Digest Hemicellulose

  • Zhang, Chengbo;Xu, Bo;Lu, Tao;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1255-1265
    • /
    • 2019
  • To investigate the diversity of gastrointestinal microflora and lignocellulose-degrading enzymes in wild Asian elephants, three of these animals living in the same group were selected for study from the Wild Elephant Valley in the Xishuangbanna Nature Reserve of Yunnan Province, China. Fresh fecal samples from the three wild Asian elephants were analyzed by metagenomic sequencing to study the diversity of their gastrointestinal microbes and cellulolytic enzymes. There were a high abundance of Firmicutes and a higher abundance of hemicellulose-degrading hydrolases than cellulose-degrading hydrolases in the wild Asian elephants. Furthermore, there were a high abundance and a rich diversity of carbohydrate active enzymes (CAZymes) obtained from the gene set annotation of the three samples, with the majority of them showing low identity with the CAZy database entry. About half of the CAZymes had no species source at the phylum or genus level. These indicated that the wild Asian elephants might possess greater ability to digest hemicellulose than cellulose to provide energy, and moreover, the gastrointestinal tracts of these pachyderms might be a potential source of novel efficient lignocellulose-degrading enzymes. Therefore, the exploitation and utilization of these enzyme resources could help us to alleviate the current energy crisis and ensure food security.

Genome Information of Maribacter dokdonensis DSW-8 and Comparative Analysis with Other Maribacter Genomes

  • Kwak, Min-Jung;Lee, Jidam;Kwon, Soon-Kyeong;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.591-597
    • /
    • 2017
  • Maribacter dokdonensis DSW-8 was isolated from the seawater off Dokdo in Korea. To investigate the genomic features of this marine bacterium, we sequenced its genome and analyzed the genomic features. After de novo assembly and gene prediction, 16 contigs totaling 4,434,543 bp (35.95% G+C content) in size were generated and 3,835 protein-coding sequences, 36 transfer RNAs, and 6 ribosomal RNAs were detected. In the genome of DSW-8, genes encoding the proteins associated with gliding motility, molybdenum cofactor biosynthesis, and utilization of several kinds of carbohydrates were identified. To analyze the genomic relationships among Maribacter species, we compared publically available Maribacter genomes, including that of M. dokdonensis DSW-8. A phylogenomic tree based on 1,772 genes conserved among the eight Maribacter strains showed that Maribacter speices isolated from seawater are distinguishable from species originating from algal blooms. Comparison of the gene contents using COG and subsystem databases demonstrated that the relative abundance of genes involved in carbohydrate metabolism are higher in seawater-originating strains than those of algal blooms. These results indicate that the genomic information of Maribacter species reflects the characteristics of their habitats and provides useful information for carbon utilization of marine flavobacteria.

Roles of Carbohydrate-Binding Module (CBM) of an Endo-β-1,4-Glucanase (Cel5L) from Bacillus sp. KD1014 in Thermostability and Small-Substrate Hydrolyzing Activity

  • Lee, Jae Pil;Shin, Eun-Sun;Cho, Min Yeol;Lee, Kyung-Dong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2036-2045
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel5L, was cloned using the shot-gun method from Bacillus sp.. The gene, which contained a predicted signal peptide, encoded a protein of 496 amino acid residues, and the molecular mass of the mature Cel5L was estimated to be 51.8 kDa. Cel5L contained a catalytic domain of glycoside hydrolase (GH) family 5 and a carbohydrate-binding module family 3 (CBM_3). Chromatography using HiTrap Q and CHT-II resulted in the isolation of two truncated forms corresponding to 50 (Cel5L-p50) and 35 kDa (Cel5L-p35, CBM_3-deleted form). Both enzymes were optimally active at pH 4.5 and $55^{\circ}C$, but had different half-lives of 4.0 and 22.8 min, respectively, at $70^{\circ}C$. The relative activities of Cel5L-p50 and Cel5L-p35 for barley ${\beta}$-glucan were 377.0 and 246.7%, respectively, compared to those for carboxymethyl-cellulose. The affinity and hydrolysis rate of pNPC by Cel5L-p35 were 1.7 and 3.3 times higher, respectively, than those by Cel5L-p50. Additions of each to a commercial enzyme set increased saccharification of pretreated rice straw powder by 17.5 and 21.0%, respectively. These results suggest CBM_3 is significantly contributing to thermostability, and to affinity and substrate specificity for small substrates, and that these two enzymes could be used as additives to enhance enzymatic saccharification.

Protective Effects of Ulva lactuca Methanol Extracts against the Ultraviolet B-induced DNA Damage (자외선 B에 의해 유도되는 DNA 상해에 대한 참갈파래 메탄올 추출물의 보호 효과)

  • Jeong, Seula;Chung, Yuheon;Park, Jong Kun
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.3
    • /
    • pp.309-316
    • /
    • 2020
  • In this study, we investigated the protective effects of Ulva lactuca methanol extracts against ultraviolet B (UVB)-induced DNA damage in HaCaT cells. First, the contents of general and antioxidative nutrient contents of Ulva lactuca were measured. The moisture, carbohydrate, crude protein, crude fat and ash were 14.01%, 44.80%, 23.19%, 3.10% and 14.90%, respectively. Magnesium that acts as DNA repair enzyme cofactor was the most abundant mineral followed by Ca, P and Fe. The total phenolic and anthocyanoside contents of Ulva lactuca were 2.69 mg/g and 0.13 mg/g, respectively. Cells treated with Ulva lactuca methanol extracts for 24 hours post UVB exposure increased cell viability in a concentration-dependent manner compared to the non-treated control. Also, Ulva lactuca methanol extracts decreased the levels of UVB-induced DNA damage such as cyclobutane pyrimidine dimer and DNA damage response (DDR) proteins such as p-p53 and p21. These results suggest that Ulva lactuca methanol extracts comprising physiological active substances such as Mg, polyphenols and anthocyanosides promote DNA repair by regulating genes related with DDR.

Complete genome sequence of Tamlana sp. UJ94 degrading alginate (알긴산을 분해하는 세균 Tamlana sp. UJ94의 완전한 유전체 서열)

  • Jung, Jaejoon;Bae, Seung Seob;Chung, Dawoon;Baek, Kyunghwa
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.463-464
    • /
    • 2018
  • Tamlana sp. UJ94 isolated from seawater can degrade alginate. To identify the genomic basis of this activity, the genome was sequenced. The genome was composed of 4,116,543 bp, 3,609 coding sequences, and 35.2 mol% G + C content. A BLASTp search predicted the presence of 9 alginate lyases as well as 6 agarases, 5 amylases, 4 carrageenases, 1 cellulase, 4 pectate lyases, and 7 xylanases, indicating its ability to degrade diverse polysaccharides. The genome of strain UJ94 is a source of polysaccharide-degrading enzymes for bioconversion processes.