• Title/Summary/Keyword: carbody

Search Result 269, Processing Time 0.027 seconds

Discussion of a Model Standard Carbody of Rolling Stocks (철도차량 표준 차체 모델 고찰)

  • Choi, Yun-Suk;Kwak, Tea-Ho;Kim, Ku-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2626-2631
    • /
    • 2011
  • In recent carbody design of rolling stocks, the development of a new carbody structure rather than designing the carbody structure by applying a proven new way to design the carbody structure has been applied. Structural requirements of the carbody being equal, the same applies to the carbody structure means that it is possible to design a carbody structure. By kinematic envelope & speed and the environment, etc., the carbody design is in progress. Accordingly, if all conditions are the same as the existing carbody structure by the same criteria is that you can go get the same. Rather than developing a new carbody structure, carbody structure by applying proven that safety is secured is made possible. Proven standard model of the carbody structure of rolling stocks to secure a new carbody design has made it possible to apply. In addition, the size of the different carbody but structural requirements are the same body design is easier to be expected. In this paper, a model standard carbody of rolling stocks is chosen and of a new carbody design that can be applied to the carbody design will attempt to demonstrate the case.

  • PDF

Bogie/Carbody Interface Bolster Development for the Installation of Active Suspensions and the Modification Operation Improvement of TTX Vehicle (TTX 차량의 능동 현가장치 설치 및 수정 작업 개선을 위한 대차/차체 인터페이스 볼스터 개발)

  • Kim, Hyung-Joohn;Park, Sung-Tae;Kang, Kwang-Ho;Lee, Won-Sang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.28-34
    • /
    • 2011
  • The carbody underframe of TTX vehicle should be modified a lot for the installation of new devices such as an active suspension system between the bogie and the carbody of TTX vehicle, because the carbody underframe is one body structure consisting of a center sill welded with a carbody bolster. Modification operation of the carbody takes a lot of time and cost, because the huge sized carbody structure should be moved to a machining apparatus and machined to guarantee the manufacture accuracy of new device installation brackets. For this reason, modification operation improvement is needed to install new devices more efficiently between the bogie and the carbody. This paper introduce the development of 'bogie/carbody interface bolster' that not only supports the carbody weight but also enables new devices to be installed more efficiently between the bogie and the carbody. This development has advantage to reduce working time and cost to install new devices such as an active suspension system between the bogie and the carbody by minimizing the modification of the carbody of TTX vehicle.

  • PDF

A Study on Material Selection of the Carbody Structure of Korean Tilting Train express(TTX) through the Verification of Design Requirements (설계요구조건 검증을 통한 한국형 고속 틸팅열차(TTX)의 차체 재료 선정에 관한 연구)

  • 신광복;구동회;한성호;박기진
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2004
  • In order to determine the most suitable material system for achieving the lightweight design while fulfilling the design requirements of carbody structures of Korean Tilting Train eXpress(TTX), aluminum carbody. composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in the present study. The finite-element analysis was used to verify the design requirements or the TTX carbody structures with the material system considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were used as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity in comparison to aluminum and composite carbody structures.

A Study on Material Selection of the Carbody Structure of Korean Tilting Train eXpress(TTX) (한국형 고속 틸팅열차(TTX)의 차체 재질 선정 연구)

  • Shin, Kwang-Bok;Koo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.462-467
    • /
    • 2004
  • In order to determine the most suitable material system which can achieve the lightweight design and fulfill the design requirements of carbody structures of Korean Tilting Train eXpress (TTX), aluminum carbody, composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in present study. The finite-element analysis was used to verity the design requirements of the TTX carbody structures with the material system being considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were checked as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity when compared to aluminum and composite carbody structures.

  • PDF

Development of Construction and Painting Technology for the Aluminum Carbody of Rolling stock (알루미늄 철도차량 차체 제작 및 도장 기술 개발)

  • 서승일;김진태;박일철;이동헌;신돈수
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 1999
  • Based on the development of designed technology for aluminum carbody. the prototype aluminum carbody has been constructed. All extrusion profiles required for the carbody has been produced and their quality has also been proven. For sound construction. welding technology to join aluminum extrusion profiles has been developed and jigs for precise assembly of blocks have been made. The aluminum carbody for urban subway train has been completed with the required chamber being set and the welding deformations being constrained by jigs. The safety of the carbody structure has also been proven by the static load test. And also, painting technology has been developed and the surface of the carbody has been pre-treated and painted. The developed technology to construct the aluminum carbody can be used in mass production of aluminum cars ordered by domestic and foreign customers.

  • PDF

The Application of Articulation Systems based on the Number of Carbody Modules of the Low-Floor Tram (저상트램 모듈 수량에 따른 아티큘레이션 장치의 적용 검토)

  • Lee, Jae-Ik;Jang, Sung-Chan;Eom, Kyong;Lee, Joung-Yul;Kim, Kuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.842-848
    • /
    • 2011
  • The low-floor tram is a kind of railway vehicles which is operated on the street way track. For reducing the radius of curvature of the track, the tram consists of some carbody modules, and the articulation systems connect and support these carbody modules. The kind of articulation systems would be the hinge type and the pitching type. The hinge type articulation could allow only the yawing motion of the carbody modules, and the pitching type articulation could allow the pitching and yawing motions of the carbody modules simultaneously. With these function of the articulation systems, the tram could be operated on the horizontal and vertical curvature of the track. The number of each type of articulation could be decided with the number of carbody modules, and the manufacturer would decided the position of each type of the articulation in the view of the stability of carbody modules in the operation condition.

  • PDF

A Study on the Modular Design of Hybrid Lightweight Carbody Structures Made of Sandwich Composites and Aluminum Extrusion (샌드위치 복합재와 알루미늄 압출재를 적용한 하이브리드 경량 차체 구조물의 모듈화 설계 연구)

  • Jang, Hyung-Jin;Shin, Kwnag-Bok;Han, Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2644-2649
    • /
    • 2011
  • The purpose of this study is to propose the modular design of hybrid lightweight carbody structures made of sandwich composites and aluminum extrusion. The sandwich composites were used for secondary structures to minimize the weight of carbody, and the aluminum extrusions were applied to primary structures to improve the stiffness of carbody and manufacturability. Key requirements were defined for the modular design of hybrid carbody, and the applied parts of sandwich composites were determined through the topology optimization analysis. Consequently, feasibility of enhancing mass saving and maintainability in modular hybrid carbody design were presented, comparing with the carbody structures made of aluminum extrusion or sandwich composites only.

  • PDF

The Manufacturing Process for Hybrid Composite Carbody Structures of Korean Tilting Train eXpress (TTX 하이브리드 복합재 차체 제작 공정)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.212-215
    • /
    • 2004
  • The hybrid composite carbody structures were considered as the carbody system of Korean Tilting Train eXpress(TTX) to achieve the lightweight design. The TTX carbodies are composed of the carbody shell made of the sandwich composite structure and the undeframe made of the metal structure. The sandwich structures were used to minimize the weight of carbody, and the metal underframe was used to modify the design easily and to keep the strength of underframe by the installation of the electrical equipments. The sandwich carbody structures will be cured in an autoclave. In this paper, the manufacturing processes of the TTX carbody structures were introduced briefly.

  • PDF

A safety evaluation on the loading test of EMU′s carbody having stainless and aluminum (스테인리스와 알루미늄으로 제작된 전동차의 구조체 하중시험에 대한 안전성 평가)

  • 정종덕;김원경;윤성철;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1525-1529
    • /
    • 2003
  • This paper describes the result of carbody load test. The purpose of the test is to evaluate an safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Carbody material applied a stainless steel and an aluminum alloy, The stainless steel model is the carbody of a motor car which is delivering to KNR line 1 in 2002 and the aluminum alloy model is the carbody of a motor car which is delivering to GWANGJU line 1 in 2003.

  • PDF

Structural Characteristics of a Hybrid Composite Carbody of Korean Tilting Train by Weight Load (한국형 틸팅열차용 복합재 차체의 하중적재에 따른 구조적 특성고찰)

  • Kim Jung-Seok;Jeong Jong Cheol;Han Jeong-Woo;Lee Sang-Jin;Kim Seung-Cheol;Seo Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.251-256
    • /
    • 2006
  • This paper explains manufacturing process, analysis and experimental studies on a hybrid composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a aluminium honeycomb core and woven fabric carbon/epoxy faces. In order to evaluate deformational behavior of the composite carbody, the static load test under vertical load has been conducted. From the test, the vertical deflection an겨 cross sectional deformation of the carbody were analysed and measured. The maximum deflection along the side sill was 9.25mm in the experiment and 8.28mm in the analysis. The maximum cross sectional deformation was measured 5.42mm at carbody center in lateral direction and 4.06mm at roof center in vertical direction.