• 제목/요약/키워드: carbides

검색결과 432건 처리시간 0.03초

오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구 (An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels)

  • 문준오;박성준
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.

여러 가지 크기의 $SiC_{platelet}$ Seed를 함유한 SiC 세라믹스의 미세구조 및 기계적 특성 (Microstructures and Mechanical Properties of SiC Containing $SiC_{platelet}$ Seeds of Various Size)

  • 최명제;박찬;박동수;김해두
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1094-1101
    • /
    • 1999
  • Liquid phase sintered silicon carbides were obtained by sintering of $\alpha$-SiC and $\beta$-SiC powders as starting materials at 2173K and 2273K respectively. The SiCplatelet seeds of different sizes were obtained by a repeated ball milling and sedimentation. Their mean size (d50) were 2.217 ${\mu}{\textrm}{m}$ 13.67 ${\mu}{\textrm}{m}$, 22.17${\mu}{\textrm}{m}$ respectively 6wt%Al2O3-4 wt% Y2O3 was used as the sintering additives for the liquid phase sintering. The two silicon carbides had a bimodal microstructure consisting of small matrix grains and large platelike grains when the SiCplatelet seeds were added. In the case of the $\beta$-SiC the appreciable phase transformation occurred as sintering temperature increased from 2173K to 2273K and resulted in matrix shape change from equiaxed into platelike grains. In contrast there was no shape change for the $\alpha$-SiC. The size of large grains in the $\alpha$-SiC of large grains in the $\alpha$-SiC was larger than that of the large grains in the $\beta$-SiC These results suggested that the growth of the $\alpha$-SiCplatelet in the $\alpha$-SiC matrix was more favored than that of the $\alpha$-SiCplatelet in the $\beta$-SiC matix. The three point flexural strength decreased as the added seed size increased. Fracture toughness values of samples sintered at 2273K were higher than those of samples sintered at 2173K.

  • PDF

AISI316L 강에 저온 플라즈마침탄 및 DLC 복합 코팅처리 시 처리온도에 따른 표면특성평가 (Influence of Treatment Temperature on Surface Characteristics during Low Temperature Plasma Carburizing and DLC duplex treatment of AISI316L Stainless Steel)

  • 이인섭
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.60-65
    • /
    • 2011
  • A low temperature plasma carburizing process was performed on AISI 316L austenitic stainless steel to achieve an enhancement of the surface hardness without degradation of its corrosion resistance. Attempts were made to investigate the influence of the processing temperatures on the surface hardened layer during low temperature plasma carburizing in order to obtain the optimum processing conditions. The expanded austenite (${\gamma}_c$) phase, which contains a high saturation of carbon (S phase), was formed on all of the treated surfaces. Precipitates of chromium carbides were detected in the hardened layer (C-enriched layer) only for the specimen treated at $550^{\circ}C$. The hardened layer thickness of ${\gamma}_c$ increased up to about $65{\mu}m$ with increasing treatment temperature. The surface hardness reached about 900 $HK_{0.05}$, which is about 4 times higher than that of the untreated sample (250 $HK_{0.05}$). A minor loss in corrosion resistance was observed for the specimens treated at temperatures of $300^{\circ}C{\sim}450^{\circ}C$ compared with untreated austenitic stainless steel. In particular, the precipitation of chromium carbides at $550^{\circ}C$ led to a significant decrease in the corrosion resistance. A diamond-like carbon (DLC) film coating was applied to improve the wear and friction properties of the S phase layer. The DLC film showed a low and stable friction coefficient value of about 0.1 compared with that of the carburized surface (about 0.45). The hardness and corrosion resistance of the S phase layer were further improved by the application of such a DLC film.

고강도-신장플랜지성 열연강의 미세조직 및 기계적 성질 (Microstructure and Mechanical Properties of High Strength and Stretch-Flangeability Hot-Rolled Steels)

  • 천은준;이주승;도형협;김성주;박용호;강남현
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.16-23
    • /
    • 2012
  • Research into the development of high strength (1 GPa) and superior formability, such as total elongation (10%), and stretch-flangeability (50%) in hot-rolled steel was conducted with a thermomechanically controlled hot-rolling process. To improve the overall mechanical properties simultaneously, low-carbon steel using precipitation hardening of Ti-Nb-V multimicroalloying elements was employed. And, ideal microstructural characteristics for the realization of balanced mechanical properties were determined using SEM, EBSD, and TEM analyses. The developed steel, 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V), consisted of ferrite as the matrix phase and second phase of granular bainite with fine carbides (20-50 nm) in both phases. The significant factor of the microstructural characteristics that affect stretch-flangeability was found to be the microstructural homogeneity. The microstructural homogeneity, manifest in such characteristics as low localization of plastic strain and internally stored energy, was identified by grain average misorientation method, analyzed by electron backscattered diffraction (EBSD) and hardness deviation between the phases. In summar, a hot-rolled steel having a composition 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V) demonstrated a tensile strength of 998 MPa, a total elongation of 19%, and a hole expansion ratio of 65%. The most important factors to satisfy the mechanical property were the presence of fine carbides and the microstructural homogeneity, which provided low hardness deviation between the phases.

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • ;송준우;탁병진;홍현선;홍순직
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

분무주조 고속도공구강의 고온변형 거동에 관한 연구 (A Study on High Temperature Deformation Behavior of Spray-Formed High Speed Steels)

  • 하태권;정재영
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.123-129
    • /
    • 2018
  • In the present study, the mechanical behavior of the spray-formed high speed steel was investigated employing the internal variable theory of inelastic deformation. Special attention was focused on the effect of the microstructure evolution during the hot working process, such as the distribution of carbides to provide a basic database for the production condition of high speed steels with excellent properties. The billets of high speed steel ASP30TM were fabricated by a spray forming, and the subsequently hot-rolled and heat-treated process to obtain uniformly distributed carbide structure. As noted the spray-formed high speed steel showed relatively coarser carbides than hot-rolled and heat-treated one with fine and uniformly distributed carbide structure. The step strain rate tests and high temperature tensile tests were carried out on both the spray-formed and the hot-rolled specimens, to elucidate their high temperature deformation behavior. The spray-formed high speed steel showed much higher flow stress and lower elongation than the hot-rolled and heat-treated steel. During the tensile test at $900^{\circ}C$, the interruption of the deformation for 100 seconds was conducted to reveal that the recovery was a main dynamic deformation mechanism of spray formed high speed steel. The internal variable theory of the inelastic deformation was used to analyze data from the step strain rate tests, revealing that the activation energies for hot deformation of as-spray-formed and hot-worked steels, which were 157.1 and 278.9 kJ/mol, and which were corresponding to the dislocation core and lattice diffusions of ${\gamma}-Fe$, respectively.

2.25Cr-1Mo 강의 열화와 기계적 성질변화에 관한 연구 (A Study on the Variation of Mechanical Properties Due to Thermal Aging in 2.25Cr-1Mo Boiler Tube Steel)

  • 정희돈
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1372-1381
    • /
    • 1996
  • As recieved boiler tuve steel was aged artificially at $650^{\circ}C$ and$690^{\circ}C$ for various time duration to simulate the material deterioration which could be occurred during the operation of fossiol power plants. And the tensile tests, the microhardness tests and the characterization of carbides formed in the aging process were performed to asses the relationship between the mechanical properties and the effect of thermal aging. Furthernore, the amout of Mo-rich carbide were investigated by ondestructive method by noticing the fact that formation of Mo-rich carbide were investigated by ondestructive melthod by noticing the fact that formation of Mo-rich carbides($Mo_6C$) which stabilizes lastly affects the mechanical properties. It was known that the microhardness results of service exposed materials were similar to the ones which are aged at $650^{\circ}C$. The room temperature measurement showed small variation in the yield points and ultimate strength in materials aged at $650^{\circ}C$. Those properties at $540^{\circ}C$ showed the abrupt decrease compared with as received material even if short aging time. And it was found that $650^{\circ}C$ $690^{\circ}C$ aging cause different effects on mechanical properties, although the temperature time parameters(LMP;Larson-Miller parameter) are same. And it was concluded that the aigng at $650^{\circ}C$ is more appropriate to simulate the service exposed condition. Finally, the relationship between high temperature tensile properties and Ip values were established, which offers a potential way of reliability tests onthe power plant components.

Machining Characteristics of Cemented Carbides in Micro Cutting within SEM

  • Heo, Sung-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.35-42
    • /
    • 2004
  • This research describes that the cutting characteristics and tool wear behavior in the micro cutting of three kinds of wear resistant cemented carbides (WC-Co; V40, V50 and V60) using PCD (Poly Crystalline Diamond) and PCBN (Poly crystalline Cubic Boron Nitride) cutting tools by use of the SEM (Scanning Electron Microscope) direct observation method. The purpose of this research is to present reasonable cutting conditions from the viewpoint of high efficient cutting refer to a precise finished surface and tool wear. Summary of the results is as follows: (1) The cutting forces tend to increase as the increase of the weight percentage of WC particles, and the thrust forces was larger than the principal forces in the cutting of WC-Co. These phenomena were different from the ordinary cutting such as cutting of steel or cast iron. (2) The cutting speed hardly influenced the thrust force, because of the frictional force between the cutting tool edge and small WC particles at low cutting speed region such as 2$\mu\textrm{m}$/s. It seemed that the thrust cutting force occurred by the contact between the flank face and work material near the cutting edge. (3) The wear mechanism for PCD tools is abrasion by hard WC particles of the work materials, which leads diamond grain to be detached from the bond. (4) From the SEM direct observation in cutting the WC-Co, it seems that WC particles are broken and come into contact with the tool edge directly. This causes tool wear, resulting in severe tool damage. (5) In the orthogonal micro cutting of WC-Co, the tool wear in the flank face was formed bigger than that in the rake face on orthogonal micro cutting. And the machining surface integrity on the side of the cutting tool with a negative rake angle was better than that with a positive one, as well as burr in the case of using the cutting tool with a negative rake angle was formed very little compared to the that with a positive one.

420J1 마르텐사이트계 스테인리스강의 오스테나이트화 조건이 기계적 성질에 미치는 영향 (Influence of Austenitizing Conditions on the Mechanical Properties in 420J1 Martensitic Stainless Steel)

  • 김영주;주동원;박성훈;김기돈;성장현
    • 열처리공학회지
    • /
    • 제7권1호
    • /
    • pp.25-34
    • /
    • 1994
  • To investigate the effect of austenitizing tempratures on the mechanical properties and corrosion resistance of 0.19%C-13.6%Cr martensitic stainless steel, the changes in martensitic trasformation temperatures, mechanical properties and anodic polarization curve were examined after changing the austenitizing temperatures and tempering temperatures. On increasing heating rate at the same austenitizing temperatures, $A_s$, $A_r$ and $M_s$ increased. And the $M_s$ temperature showed to be decreased with increasing austenitizing temperature. With increasing tempering temperature up to $500^{\circ}C$, strength, hardness and impact value were not changed remarkably, on the other hand the tensile strength and hardness decreased and impact value increased after tempering above $550^{\circ}C$ owing to the $M_{23}C_6$ carbide precipitation. The abrupt decrease in elongation at the tempering temperture of $500^{\circ}C$ proved to the precipitation of $M_7C_3$ carbide. The effect of austenitizing temperature on the mechanical properties of the tempered specimen showed to be decreased in impact value and elongation at the austenitizing temperature of $1150^{\circ}C$. At low tempering temperatures the corrosion resistance of the tempered specimen was not changed obviously with increasing tempering temperature. On the other hand, the resistance decreased above the tempering temperature of $600^{\circ}C$ due to the precipitation of $M_{23}C_6$ carbides. The corrosion resistance showed to be improved with increasing the austenitizing temperature owing to the dissolution of carbides.

  • PDF

사출성형한 M3/2계 고속도공구강 분말의 탄소함량 및 소결밀도 변화 (Variations in Carbon Content and Sintered Density of M3/2 Grade High Speed Steel Powders on Metal Injection Molding Process)

  • 이광희
    • 한국분말재료학회지
    • /
    • 제4권3호
    • /
    • pp.170-178
    • /
    • 1997
  • An investigation was performed to apply the M3/2 grade high speed steel for metal injection molding using both prealloyed and elementally blended powders. The injected samples were subjected to a debinding step in $H_2/N_2$ gas atmosphere at a ratio that affected the carbon content of the material. The carbon content ranged from 1.4wt.% to 1.43wt%. with increasing $H_2$ content up to 80% $H_2$ in $H_2/N_2$ atmosphere for the prealloyed powders. The carbon contents of the elementally blended powders exhibited 1.44wt.% and 1.62wt.% at 10% $H_2/N_2$ and 20% $H_2/N_2$ gas, respectively. This level decreased to 0.17wt.% upon increasing the $H_2$ content. The sintered density of both powders increased rapidly as the temperature reached the liquid phase forming temperature. After forming the liquid phase, the density rapidly increased to the optimum sintering temperature for the prealloyed powders, whereas the density of mixed elemental powders goes up slowly to the optimum sintering temperature. The optimum sintering temperature and density are 126$0^{\circ}C$ and 97.3% for the prealloyed powders and 128$0^{\circ}C$ and 96.9% for the elementally blended powders, respectively. The microstructure of the specimen at the optimum sintering temperature consisted of fine grains with primary carbides of MC and $M_6C$ type for the prealloyed powders. The elementally blended powders exhibited coarse grains with eutectic carbides of MC, $M_2C$ and $M_6C$ type.

  • PDF