• 제목/요약/키워드: carbide reinforced

검색결과 71건 처리시간 0.019초

탄화물 강화 Ni-Grain Roll개발 (Development of the Carbide Reinforced Ni-Grain Roll)

  • 서용찬;정봉호;이형철;김윤기
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.223-230
    • /
    • 2004
  • In order to improve the productivity and quality of the hot rolled products, many morden mills have continuously required advanced roll materials. The introduction of HSS rolls in early stands of the Hot Strip Mill brought the excellent performance in wear resistance and surface roughness. Ni-grain rolls used in the later stands was needed to improve the roll performance. Therefore, the carbide reinforced Ni-grain roll was developed. The present paper will describe the development of carbide reinforced rolls made by INI STEEL and the results of mill tests. The wear resistance was increased upto $40\%$ and the anti-accident ablility was remarkably improved compared to the normal Ni-rain roll.

  • PDF

니켈-텅스텐 합금 결합상 적용 고경도 초경합금 (High-Hardness Cemented Carbide With Nickel-Tungsten Alloy Binder)

  • 권한중
    • 한국분말재료학회지
    • /
    • 제31권4호
    • /
    • pp.318-323
    • /
    • 2024
  • Cemented carbide for cutting tools, which is composed of carbide as a hard phase and metallic component as a metallic phase, mainly uses cobalt as the metallic phase due to the excellent mechanical properties of cobalt. However, as the demand for machining difficult-to-machine materials such as titanium and carbon fiber-reinforced plastics has recently increased, the development of high-hardness cemented carbide is necessary and the replacement of cobalt metal with a high-hardness alloy is required. In this study, we would like to introduce high-hardness cemented carbide fabricated using nickel-tungsten alloy as the metallic phase. First, nickel-tungsten alloy powder of the composition for formation of intermetallic compound confirmed through thermodynamic calculations was synthesized, and cemented carbide was prepared through the sintering process of tungsten carbide and the synthesized alloy powder. Through evaluating the mechanical properties of high-hardness cemented carbide with the nickel-tungsten alloy binder, the possibility of producing high-hardness cemented carbide by using the alloys with high-hardness was confirmed.

서로 다른 밀도를 갖는 탄소섬유강화 탄화규소 복합재료의 압흔응력에 의한 기계적 거동 (Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities)

  • 이기성;김일겸;김태우;김세영;한인섭;우상국
    • 한국세라믹학회지
    • /
    • 제48권4호
    • /
    • pp.288-292
    • /
    • 2011
  • In this study, we investigated the mechanical behavior of carbon fiber reinforced silicon carbide composites by indentation stress. Relatively porous and dense fiber reinforced ceramic composites were fabricated by liquid silicon infiltration (LSI) process. Densification of fiber composite was controlled by hardening temperature of preform and consecutive LSI process. Load-displacement curves were obtained during indentation of WC sphere on the carbon fiber reinforced silicon carbide composites. The indentation damages at various loads were observed, and the elastic modulus were predicted from unloading curve of load-displacement curve.

탄소섬유 강화 복합재 가공용 드릴 공구 개발 및 홀 가공성 평가 (Development of a Drill Tool for CFRP Machining and Evaluation of Drilling Processing)

  • 사민우
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.8-13
    • /
    • 2020
  • Carbon fiber-reinforced plastics (CFRPs) are extremely strong and light fiber-reinforced plastics containing carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in the aerospace, automotive, and ship superstructure industries. In CFRP drilling, the tool performance greatly varies depending on the tool shapes, cutting conditions, and diamond coating. This study developed a new type of tungsten carbide drill with multi-blade edges to evaluate the surface quality of CFRP materials according to the coating thickness of diamond-coated drills. Experiments on tool wear, surface roughness, and burr formation were conducted. The bore exit quality of a 12 mμ -coated drill was better than that of a 6 mμ -coated drill. The superior effects of the 12 mμ -coated drill and the good surface quality of CFRP were also demonstrated.

가압소결에 의한 자체강화 탄화규소 세라믹스의 제조 (Preparation of Self-reinforced Silicon Carbide Ceramics by Hot Pressing)

  • 박종곤;이종국;서동석;김민정;이은구;김환
    • 한국세라믹학회지
    • /
    • 제36권12호
    • /
    • pp.1356-1363
    • /
    • 1999
  • 출발원료의 상분을 제어와 가압소결 및 열처리에 의하여 자체강화 미세구조를 갖는 탄화규소 세라믹스를 제조하여 그 특성을 고찰하였다. 자체강화 탄화규소 세라믹스는 알파상과 베타상 탄화규소 분말을 혼합한 모든 원료조합으로부터 얻어졌으며, 이러한 미세구조는 열처리 동안 베타상 탄화규소 입자가 긴 막대상 입자 형태를 갖는 4H 상의 알파 탄화규소로 상변태하면서 형성되었다. 긴 막대상의 탄화규소 입자의 부피분율 및 장단축비는 베타상 탄화규소 분말의 함유량이 50%인 시편에서 가장 크게 나타났으며, 이로 인하여 이 시편은 제조된 시편 중에서 가장 높은 인성을 나타내었다.

  • PDF

탄화규소계 세라믹스에서 미끄럼시의 마모 및 마모천이에 미치는 계면강도의 영향 (Effects of Interface Boundary Strength on Wear and Wear Transition during Sliding in Silicon Carbide Ceramics)

  • 김동진;박성길;류현;엄창도;조성재;김석삼
    • Tribology and Lubricants
    • /
    • 제11권4호
    • /
    • pp.21-27
    • /
    • 1995
  • The effects of interface boundary strength on wear and wear transition during sliding have been investigated in silicon carbide ceramics. Three different microstructures, i.e., solid state sintered silicon carbide, liquid phase sintered silicon carbide and liquid phase sintered silicon carbide composite reinforced with TiB$_{2}$ particulates, were designed by hot pressing. Examinations of crack patterns and fracture modes indicated that interface boundaries were relatively strong between silicon carbide grains in the solid state sintered silicon carbide, intermediate in the liquid phase sintered silicon carbide and weak between silicon carbide grains and TiB$_{2}$ particles in the composite. Wear data and examinations of worn surfaces revealed that the wear behavior of these silicon carbide ceramics could be significantly affected by the interface strength. In the solid state sintered silicon carbide, the wear occurred by a grooving process. In the liquid phase sintered silicon carbide and composite, on the other hand, an abrupt transition in wear mechanism from initial grooving to grain pull-out process occurred during the test. The transition occurred significantly earlier in the composite than in the carbide.

재생 초경합금 분말을 활용한 금속기지 복합재료의 Abrasion 마모거동 (Abrasion Wear Behavior of Recycled Tungsten Carbide Reinforced Metal Matrix Composite)

  • 강남현;채현병;김준기;최종하;김정한
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.850-854
    • /
    • 2003
  • The abrasion wear behavior on the hardfacing weld was investigated by performing abrasion wear, hardness, and microstructural tests. The gas metal arc(GMA) weld was produced by using the cored wire which was filled with the hard metal, i.e., the recycled tungsten carbide (WC) reinforced metal matrix composite. For 30% addition of the hard metal, the abrasion wear resistance was significantly improved comparing with that for 20% addition of the hard metal. Above 30% addition of the hard metal, however, there was no significant improvement of the wear resistance. The improvement of the wear resistance was due to the increased amount of eutectic carbides(W$_{6}$C) which was formed during GMA welding. For the weld in which the hard metal was added to 30-40%, an optimum level of abrasion wear resistance was performed.

나노탄소섬유와 나노카바이드섬유를 이용한 복합재의 제조와 활용에 관한 연구 (Preparation and Application of Fiber Composites made of Carbon Nanofibers and Carbide Nanofibers)

  • 임연수;김기덕;이재춘;김명수;김성수
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.569-575
    • /
    • 2000
  • Fabrication of carbon fiber reinforced composites was carried out by hand lay-up method. Carbon nanofibers and SiC nanofibers were used as filler in the composites fabrication. Carbon nanofibers, one of the new carbon materials, have 5∼500 nm in diameter and 5-10 nm in length. SiC nanofibers were modified by silicon monoxide vapor with carbon nanofibers. The composites were carbonized at 1000$^{\circ}C$ in a nitrogen atmosphere, and then densified by molten pitches impregnated in vacuum. Multiple cycles of liquid pitch impregnation and carbonization were carried out to obtain a desired density. The composites were characterized by density, microstructure. The inter-laminar shear strength (ILSS) test was performed for mechanical properties. For the new application, the microwave reflective proeprty of composites was investigated. Dielectric constant and permeability spectrum were measured in 12∼18 GHz frequency ranges. On the basis of the wave propagation theory in a lossy media, the reflection loss from the composite inter-layer was predict as a function of frequency.

  • PDF

CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교 (Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling)

  • 백종현;김수진
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.

C/SiC 복합재료 제조시 Pulse-CVI에서 증착변수의 영향 연구 (Studies on Effects of Deposition Parameters in Manufacturing of C/Sic composites by Pulse-CVI)

  • 김용탁;김영준;정귀영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.141-143
    • /
    • 2001
  • Ceramic fiber-reinforced composites have good mechanical properties in hardness and durability. In this study, we studied the formation of SiC/C composites from methyltrichlorosilane and hydrogen by the Pulse-chemical vapor infiltration(PCVI) to deposit silicon carbide around the changes of the amount of deposit. SiC/C composites formed at $950^{\circ}C$, 20torr, Pulse-times (5s/60s). SEM of the cross sectional area of semple showed deposited silicon carbide around fibers.

  • PDF