• Title/Summary/Keyword: carbide precipitation

Search Result 117, Processing Time 0.022 seconds

A Study on the Fatigue Crack Growth Behavior and Fracture Toughness of Martensitic Stainless Steel(12%Cr) (마르텐사이트계 스테인리스강 (12%Cr) 의 피로균열 진전거동 및 파괴인성연구)

  • 윤병주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.154-160
    • /
    • 2000
  • Martensitic stainless steels containing 12%Cr are commonly used in quenched and tempered conditions. The quenching heat treatment involves annealing to obtain austenite and to dissolve the carbides , followed by cooling to transform the austenite into martensite and often to cause carbide predipitation. In this study, we used three different tempered specimens which were temperated at 30$0^{\circ}C$, 67$0^{\circ}C$ and 75$0^{\circ}C$ . The crack propagation and fracture toughness tests were performed on this three different specimens. The experimental results showed that the highest value of crack growth rate and the lowest value of fracture toughness were observed in the specimen which were temperated at $600^{\circ}C$, however, when the specimen were temperated at 75$0^{\circ}C$, the vale of crack growth rate was significantly decreased and the value of fracture toughness was significantly increased as compared to which were temperated at $600^{\circ}C$.

  • PDF

Determination of Optimal Austenitizing Temperature in High-Alloyed Tool Steels (고합금 공구강의 최적 오스테나이트 처리 온도 결정)

  • Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.156-163
    • /
    • 2017
  • In the present study, we investigated the optimal austenitizing temperature of high-alloyed tool steels from an industrial point of view. Austenitizing temperatures for manufacturing 25 commercial tool steels were surveyed with their alloy compositions. The relationship between the austenitizing temperatures and the critical equilibrium temperatures by thermodynamic-based calculation was analyzed and a correlation was found. Based on the austenitizing temperatures of 25 commercial tool steels and the thermodynamic calculation results, we proposed a simple equation to predict an optimal austenitizing temperature to achieve superior mechanical properties of high-alloyed tool steels. The applicability of the proposed equation was experimentally validated with a new developed tool steel.

Study on Erosion Characteristics of Aged HK40 Steel (열화된 HK40강의 마식특성에 관한 연구)

  • Kim, Am-Kee;Chun, Yong-Du;Lee, Kum-Bae;Kim, Chang-Hoon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.403-408
    • /
    • 2003
  • The erosion behavior of :artificially aged HK40 steel was investigated. Erosion tests were conducted at room temperature, $200^{\circ}C$ and $400^{\circ}C$ using $Al_2O_3$ particles. Erosion rates increased with increment of temperature. The maximum erosion rate increased with the impingement angle of 30 degree. The erosion rate increased, reached the maximum at 1000 hours, and after that, decreased with heat treatment time. The mechanism of erosion seems to be the cutting wear which is very much associated with the strength of material. As results, the erosion rates were rather affected by the tensile strength and the strain hardening coefficient than the hardness and the yield strength. Such changes of material properties would be caused by the change of micro-structure due to the precipitation of carbide and the dissolution of solid element within matrix during the heat treatment.

  • PDF

Effect of Alloying Elements and Heat Treatment on the Microstructures and Mechanical Properties of Medium Carbon High Manganese Steels (중탄소 고망간강의 합금원소와 열처리 조건이 미세조직과 기계적 특성에 미치는 영향)

  • Lee, D.S.;Park, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.338-343
    • /
    • 2010
  • Mechanical properties and microstructures of medium carbon high manganese steels were investigated in terms of alloying elements such as Mn, C contents, and heat treatment condition. Austenite volume fraction was increased with increasing Mn content, leading to hardness decrease in the range of Mn content of above 10% after quenching and tempering. Such results are also supported by microstructural analysis and X-ray diffraction in that the increase in mangaese content results in the increase in austenite fraction. Studies on tempering condition indicated that not only hardness and tensile strength but also charpy impact values were reduced as tempering temperature were raised in the range of $250^{\circ}C$ to $600^{\circ}C$. It was also observed that fracture mode was changed from dimple to intergranular fracture. Such results are thought to be due to very fine carbide precipitation or impurity segreagation at grain boundaries as tempering temperature goes up. Heat treatment of Fe-5Mn-2Si-1Al-0.4C can be optimized by austenitizing at $850^{\circ}C$, air cooling and tempering at $250^{\circ}C$, resulting in 1950 MPa in Tensile strength, 17% in elongation and 23.3 $J/cm^2$ in charpy impact energy with high work hardening characteristics.

Corrosion Resistance of Degraded STS310S and STS347H by Cr-free Modified Si Organic/Inorganic Hybrid Coating Solution (Cr-free Si 변성 유/무기하이브리드 코팅액에 의한 열화된 STS310S 및 STS347H의 내식성)

  • Lee, So-Young;Kim, Young-Soo;Jeong, Hee-Rok;Kim, Gui-Shik;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.12-18
    • /
    • 2015
  • Austenitic stainless steels generally experience the occurrence of chromium-depleted zones at the boundaries, known as sensitization, caused by the carbide precipitation that takes place due to a welding process or heat treatment. Normally, the depleted zones become the focus of the intense corrosion. In this study, the Cr-free organic/inorganic hybrid solution was developed, and the artificially degraded STS316S and STS347H with the solution-coating investigated the corrosion resistance by salt spray test. Both the OIBD-1 and OIBD-2 solutions improved the corrosion resistance of STS310S and STS347H. The corrosion resistance with the OIBD-1 solution was better than that of OIBD-2 solution. Additionally, Both solutions have been proven excellence in adhesion ability, boiling water resistance and flexibility. However, a problem of rubbing after the boiling was found out to be overcome.

Recent Developments in Friction Stir Welding Technology of Stainless Steels (스테인리스강의 마찰교반접합 기술 개발 동향)

  • Bang, Han-Sur;Bang, Hee-Seon;Kim, Jun-Hyung;You, Jea-Sun
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.13-15
    • /
    • 2012
  • Stainless steels is widely used in various industries due to its high strength and excellent corrosion resistance. However, in the case of fusion welding for stainless steel, chromium deficiency layer produced by chromium carbide precipitation during welding process causes corrosion-resistance to be lower and formation of intergranular corrosion. It requires a inevitable complex procedure such as pre-heating and post-heating process etc. to prevent such weld defects. From this viewpoint, the new welding process such as a solid state welding method is suited for welding of stainless steels due to its advantages over the fusion welding. Therefore this paper intends to investigate the research trend on friction stir welding, one of solid state welding processes for stainless steels.

Effect of Primarily Solidified Structure on the Microstructure and the Mechanical Properties of High Cr White Iron (고크롬 백주철의 미세조직과 기계적 특성에 미치는 초기응고 조직의 영향)

  • Jo, Hyun-Wook;Do, Jeong-Hyeon;Jo, Won-Je;Chung, Hyun-Deuk;Lee, Je-Hyun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.178-184
    • /
    • 2015
  • Due to excellent abrasion resistance the high-chrome white irons are widely used in mining and mineral industries. Minor variation of carbon content in 28% chrome white iron resulted in difference in primarily solidified microstructure. Sub-eutectic (hypoeutectic) composition led to formation of primarily solidified dendrites. Formation of primarily solidified dendrites which were supersaturated with carbon and chrome also caused precipitation of fine secondary carbides that are different from relatively large plate type $M_7C_3$ carbides in the eutectic structure. Small portion of primarily solidified dendrite expected to contribute significantly to the improvement of abrasion resistance of the white iron because the dendrites provided mechanical support to carbides. The relative fraction of primary dendrite increased with reduction of carbon content from the eutectic composition. The increased fraction of primary dendrite increased hardness value of the white irons.

Effect of Precipitate on the Electrochemical Potentiokinetic Reactivation Behaviors of Stainless Steels and Nickel Base Alloys

  • Wu, Tsung-Feng;Chen, Tzu-Sheng;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.59-67
    • /
    • 2003
  • Electrochemical potentiokinetic reactivation (EPR) tests are used to evaluate the degree of sensitization (DOS) of stainless steels and nickel base alloys. The validity of EPR test to detect DOS of these alloys, however, depends all the electrolyte composition employed. The existence of precipitates such as NbC, and TiC, etc. in the alloys also affects the reactivation behaviors of these alloys. In this investigation, the reactions involved during EPR processes are analyzed. In 0.5 M $H_2SO_4$+ 0.01 M KSCN electrolyte, a reactivation peak associated with the localized attack around NbC, different from that of intergranular corrosion, is observed for the solution annealed 347 SS. For solution annealed Alloy 600, matrix corrosion and localized attack around TiC with distinct anodic peaks appeared in the EPR curves are seen in the $H_2SO_4$+ KSCN electrolyte. With proper adjustment of elect rolyte composition, the contribution from intergranular corrosion, as a result of chromium carbide precipitation along the grain boundaries, can be distingui shed from the matrix and localized corrosion for the sensitized Alloy 600.

Effect of Heat Treatment on the Microstructural Evolution of Pt-aluminide Coated Ni-based Superalloy (Pt-Aluminide로 코팅된 초내열합금의 열처리에 따른 미세조직변화)

  • Joo, D.;Park, S.H.;Jung, Y.G.;Lee, K.H.;Kim, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • Microstructural evolution of Pt-aluminide coated Ni-based superalloy has been investigated with ductilization heat treatment. The Pt coat was prepared on the superalloy and then aluminide coating was conducted using a pack cementation process. Samples were heat-treated at $1050^{\circ}C$ for 2 hrs and the microstructure and element analysis were preformed. A various precipitated compounds were observed within the coating layer and the diffusion region in the Pt-aluminide coating and heat treatment, indicating that the bi-phase compounds of $PtAl_2$ and NiAl were performed during the Pt-aluminide coating, whereas $M_{23}C_6$, MC, $Ni_3Al$ and ${\sigma}$ phases were precipitated in the inter-diffusion region. The bi-phase compounds of $PtAl_2$ and NiAl were transformed into the single phase compound of $PtAl_2$ with the heat treatment, increasing the amount of carbide and ${\sigma}$ phase.

Cavitation-Erosion Characteristics of the Stainless Steel with Adding Ti Stabilizer Element in Sea Water (안정화 원소 Ti 첨가에 따른 스테인리스강의 해수 내 캐비테이션-침식 특성)

  • Choi, Yong-Won;Yang, Ye-Jin;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.344-348
    • /
    • 2016
  • Stainless steel is widely applied in many industrial fields due to its excellent anti-corrosion and durability characteristics. However, stainless steel is very vulnerable to cavitation attack caused by high speed flow of fluid in the chloride environments such as marine environment. These conditions promote intergranular corrosion and cavitation-erosion, leading to degradation of the structural integrity and service life. In order to prevent these problems, the stabilized stainless steel is applied to the offshore and shipbuilding industries. In this study, Ti was added to 19%Cr-9%Ni as the stabilizer element with different concentrations (0.26%, 0.71%), and their durabilities were evaluated with cavitation-erosion experiment by a modified ASTM G32 method. The microstructural change was observed with the stabilizer element contents. The result of the observation indicated that the amount of carbide precipitation was decreased and its size became finer with increasing Ti content. In the cavitation-erosion experiment, both weight loss and surface damage depth represented an inverse proportional relationship with the amount of Ti element. Consequently, the stainless steel containing 0.71% of Ti had excellent durability characteristics.