• Title/Summary/Keyword: capturing condition

Search Result 64, Processing Time 0.03 seconds

Optimization of monitoring methods for air-borne bacteria in the environmental conditions of pig facilities (무균 돈사 환경 모니터링을 위한 대기 중 미생물 탐지기법 확립)

  • Lee, Deok-Yong;Seo, Yeon-Soo;Kang, Sang-Gyun;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.3
    • /
    • pp.255-261
    • /
    • 2006
  • Experimental animals have been used to biological and medical purposes and the animals must be, for these purposes, healthy and clean to microbial infection. However, the animals can be easily exposed to pathogenic microorganism via several routes. Of the routes, environmental conditions are the most important factors to keep the animals healthy and clean, especially air condition. Monitoring of air-condition has been required to keep the animal healthy and clean. However, any guideline is not available for experimental conditions with pigs. Therefore, the sampling times and points were compared in different conditions to establish an optimal protocol for monitoring of air borne bacteria. Tryptic soy agar(TSA), blood agar containing 5% defibrinated sheep blood and Sabraud dextrose agar(SDA) were used as media to capture total bacteria, pathogenic bacteria and fungi, respectively. Two methods, compulsive capture using an air-sampler and capturing fall-down bacteria were used to capture the microorganisms in the air. The points and time of capturing were different at each experiment. Air borne microorganisms were captured at three and five points in the open and closed equipments, respectively. Air was collected using an air-sampler for 1 min and 5 min and the agar plates as open status were left from 30 min to 2hr. At first, we monitored an experimental laboratory which dealt with several pathogenic bacteria and then, a protocol obtained from the investigation was applied to open or close experimental conditions with pigs. Number of bacteria was high from 10:00 to 15:00, especially on 13:30-15:30 but sharply decreased after 17:00. The tendency of the number of bacteria was similar between two methods even though the absolute number was higher with air sampler. Critical difference in the number of cells was observed at 5 min with air sampler and 2 hr with fall-down capturing method. However, 1 min with air sampler and 1 hr with fall-down capturing were the best condition to identify bacterial species collected from the air. Number of bacteria were different depending on the sampling points in closed condition but not in opened condition. Based on our results, a guide-line was suggested for screening air-borne microorganism in the experimental conditions with pigs.

Partial Field Decompositon Using Beamforming Method Under Reflective Condition (반사면이 존재하는 환경에서 빔포밍 방법을 이용한 부분 음장 재구성)

  • 선종천;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.730-734
    • /
    • 2003
  • A beamforming method is a kind of spatial filter that focus the amy's signal capturing abilities in a desired direction. In this paper, we detect the location of a source under reflective condition using the multi-dimensional MUSIC algorithm then, we can iud the image source locations from the experimental geometry, and we reconstruct the partial fields for direct wave and reflected wave by using Adaptive nulling algorithm. Numerical simulations are performed to verify its performance under various conditions.

  • PDF

Numerical Study on Multiphase Flows Induced by Wall Adhesion (벽면부착에 의해 야기되는 다상유동에 관한 수치적 연구)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.721-730
    • /
    • 2012
  • The present paper presents a numerical study on multiphase flows induced by wall adhesion. The continuum surface force (CSF) model with the wall adhesion boundary condition model is used for calculating the surface tension force; this model is implemented in an in-house solution code (PowerCFD). The present method (code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with a volume capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. The effects of wall adhesion are then numerically simulated by using the present method for a shallow pool of water located at the bottom of a cylindrical tank with no external forces such as gravity. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method efficiently simulates the surface tension-dominant multiphase flows induced by wall adhesion.

Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar (탄소포집 활성 고로슬래그 모르타르의 기초특성에 관한 연구)

  • Jang, Bong Jin;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Ju, Min Kwan;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • PURPOSES : To investigate the fundamental characteristics of blast-furnace slag mortar that was hardened with activating chemicals to capture and sequester carbon dioxide. METHODS : Various mix proportions were considered to find an appropriate stregnth development in regards with various dosages of activating chemicals, calcium hydroxides and sodium silicates, and curing conditions, air-dried, wet and underwater conditions. Flow characteristics was investigated and setting time of the mortar was measured. At different ages of 3, 7 and 28days, strength development was investigated for all the mix variables. At each age, samples were analyzed with XRD. RESULTS : The measured flow values showed the mortar lost its flowability as the activating chemicals amount increased in the scale of mole concentration. The setting time of the mortar was relatively shorter than OPC mortar but the initial curing condition was important, such as temperature. The amount of activating chemicals was found not to be critical in the sense of setting time. The strength increased with the increased amount of chemicals. The XRD analysis results showed that portlandite peaks reduced and clacite increased as the age increased. This may mean the $Ca(OH)_2$ keeps absorbing $CO_2$ in the air during curing period. CONCLUSIONS : The carbon capturing and sequestering activated blast-furnace slag mortar showed successful strength gain to be used for road system materials and its carbon absorbing property was verified though XRD analysis.

Evaluating the Accuracy of an OpenCV-Based Length Measurement Algorithm: The Impact of Checkerboard Type and Capturing Conditions (체커보드 종류 및 촬영조건에 따른 OpenCV 기반 길이측정 알고리즘 정확도 분석)

  • Kim, Hyeonmin;Kwon, Woobin;Kim, Harim;Kim, Hyungjun;Song, Seung Ho;Cho, Hunhee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.133-144
    • /
    • 2024
  • The OpenCV-based length measurement algorithm is anticipated to be effective for length measurement inspection tasks, providing objective inspection outcomes. Nonetheless, there is a notable gap in research regarding the influence of various checkerboard types and capturing conditions on the algorithm's accuracy in real-world construction settings. Consequently, this study proposes a methodology employing an OpenCV-based length measurement algorithm and checkerboard for digital construction inspection tasks. The findings suggest that using a checkerboard with square sizes of A4 or larger, and 50mm or larger, is optimal for capturing distances and angles within 4m and 90°, respectively, when deploying the algorithm. These insights are anticipated to provide practical guidelines for professionals conducting digital-based length measurement inspections.

Numerical Study of Interfacial Flows With Immersed Solids (잠겨진 물체를 포함하는 계면유동의 수치적인 연구)

  • Kim, Sung-Il;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.706-711
    • /
    • 2003
  • A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle.

  • PDF

A Study on the Algorithms of Terrestrial Photogrammetry using Vehicle (차량을 이용한 지상사진측량의 알고리즘에 관한 연구)

  • 정동훈;엄우학;김병국
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.145-150
    • /
    • 2003
  • Mobile mapping system is a surveying system that use vehicle carrying various sensors as CCD camera, GPS and IMU(Inertial measurement Unit). This system capturing images of forward direction continuously while running road. Use these images, then acquire road and road facilities information as facilities position, size or maintenance condition. In this study, we organized data and each data processing steps that are needed for 3 dimensional positioning. And develop digital photogrammetry S/W easy to use and accurate for mobile mapping system.

  • PDF

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Design of Observer-based Controller for Interval Type-2 Fuzzy System Using Staircase Membership Function Approximation (계단모양 소속 함수 근사를 이용한 구간 2형 퍼지 시스템의 관측기 기반 제어기 설계)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1732-1733
    • /
    • 2011
  • This paper presents observer-based controller design for interval type-2 fuzzy system with staircase membership approximation. In type-2 fuzzy case, membership function is itself fuzzy set itself. Thus, type-2 fuzzy system can deal with parametric uncertainties of nonlinear system by capturing the uncertainties in membership function. Likewise, stabilization condition of type-2 fuzzy system is derived from quadratic Lyapunov function, and it goes to linear matrix inequality. Furthermore, in this paper, to relax the conservativeness of stabilization condition, staircase membership function approximating method is applied. Observer-based control method is adopted to control system which has some unmeasurable states. To prove suitability of our proposed method, numerical example is presented.

  • PDF