• Title/Summary/Keyword: capsule endoscope

Search Result 40, Processing Time 0.027 seconds

Relationship between electrical stimulus strength and contraction force from the inside of small intestine (전기 자극 강도에 따른 소장 내부에서의 수축력 관계)

  • Woo, S.H.;Kim, T.W.;Lee, J.H.;Park, H.J.;Moon, Y.K.;Won, C.H.;Lee, S.H.;Park, I.Y.;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Recently, capsule endoscope was developed to observe small intestine in human body. However, the capsule does not have any locomotive ability, which reduces the benefit of the capsule endoscope. Many researches have done to give locomotion to the capsule, still it consumes too much power to generate the motion by small battery. One of the moving method is electrical stimulus that consumes less power than many methods. The electrical stimulus method causes contraction in the small intestine, and it moves the capsule. Some of papers showed it is possible to guide the capsule by electrical stimulus, however the relationship between electrical stimulus at the mucous and contraction force in the small intestine is not reported, yet. In this paper, the mucous in the small intestine was stimulated, and measured the contraction force in the small intestine is shown. The result shows, the relationship between electrical stimulus parameters (voltage, duration) and contraction force. Also, equation between electrical stimulus parameters and contraction force is roughly induced.

Orientation Tracking Method based on Angular Displacement for Wireless Capsule Endoscope (각변위 방식을 이용한 캡슐의 오리엔테이션 측정 방법)

  • Yoo, Young-Sun;Kim, Myung-Yu;You, Young-Gap
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2008
  • In this paper, we propose an orientation tracking method and a digestion path model based on angular displacement. The proposed method expresses a capsule's orientation as 3-dimension vectors and its rotation angle. Errors in roll, pitch, and yaw representing capsule's orientation information is down to $1.6^{\circ}$. Using the proposed method we can measure a roll which is not Possible to be measured using the magnetic field method. We reduce algorithm complexity lower than a previous methods based on Euler angle.

Position and Attitude Estimation of a Capsule Endoscope based on Ultrasonic Ranging (초음파 거리를 이용한 캡슐 내시경의 위치 및 자세각 추정)

  • Kim, Eun-Joung;Kim, Myung-Yu;Kim, Deok-Ki;Kim, Yong-Dae;You, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.38-44
    • /
    • 2007
  • This paper presented a location and attitude estimation scheme of a capsule endoscope based on ultrasonic ranging. The scheme comprised eight on-capsule ultrasonic sensors to alleviate measurement errors due to irregularities in human body ultrasonic characteristics. It calculated the coordinate values and angles in a Cartesian coordinate system. The Matlab simulation reflecting random errors yielded the average deviations of 0.8mm in the location and $0.2^{\circ}$ in the attitude angle. These values are far smaller than normal intestine movement ranges inside human body, and will contribute accurate diagnosis of intestine.

Recent Advances in Medical Image Processing and Diagnosis Technology for Capsule Endoscope Systems (캡슐 내시경 시스템의 최신 의료 영상처리 및 진단 기술)

  • Kim, Ki-Yun;Kim, Tae-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.802-812
    • /
    • 2013
  • Recently, Capsule Endoscope(CE) system is receiving great attention as a innovative convergence technology that allows doctors to examine the digestive tract of a human body in the minimum invasive way. Once patients swallow the vitamin pill-sized capsule, doctors can detect disease such as blood-based abnormalities, polyps, ulcers, and Crohn's disease through the image information delivered by wireless or human body communication module in CE. Although CE is really a innovative technology, it still suffers from some drawbacks in terms of correct diagnosis of lesion and analysis required time. Due to the massive images approximately 60~120 thousand frames taken by miniature camera in the CE, doctors spend too much time examining the images and analyzing the lesions. Therefore, to lighten the burden of doctors, software tools for fast diagnosis and medical image processing techniques for correct diagnosis of lesion are essential in CE system. In this paper, we investigate the latest trends of diagnosis tools and image processing techniques based on major makers of CE systems, which are hardly known to the general public.

Locomotive Microrobot for Capsule Endoscopes (캡슐형 내시경을 위한 체내 이동용 마이크로 로봇)

  • Yang, Sun-Wook;Park, Ki-Tae;Lee, Seung-Seok;Na, Kyong-Hwan;Kim, Jin-Seok;Choi, Jong-Ho;Park, Suk-Ho;Park, Jong-Oh;Yoon, Eui-Sung
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.62-67
    • /
    • 2009
  • For diagnoses of digestive organs, capsule endoscopes are widely used and offer valuable information without patient's discomfort. A general capsule endoscope which consists of image sensing module, telemetry module and battery is able to move along gastro-intestinal tracts passively only through peristaltic waves. Thus, it is likely to have some limitations for doctor to acquire images from the desired organs and to diagnose them effectively. As solutions to these problems, a locomotive function of capsule endoscopes has being developed. We have proposed a capsule-type microrobot with synchronized multiple legs. However, the proposed capsular microrobot also has some limitations, such as low speed in advancement, inconvenience to controlling the microrobot, lack of an image module, and deficiency in a steering module. In this paper, we will describe the limitations of the locomotive microrobot and propose solutions to the drawbacks. The solutions are applied to the capsular microrobot and evaluated by in-vitro tests. Based on the experimental results, we conclude that the proposed solutions are effective and appropriate for the locomotive microrobot to explore inside intestinal tracts.

  • PDF

Composite Endoscope Image Construction based on Massive Inner Intestine Photos (다량의 내장 사진에 의한 화상 구성)

  • Kim, Eun-Joung;Yoo, Kwan-Hee;Yoo, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.108-114
    • /
    • 2007
  • This paper presented an image reconstruction method based on the original capsule endoscopy photos yielding a 2-D image for faster diagnosis proposes. The proposed method constructed a 3-D intestine model using the massive images obtained from the capsule endoscope. It merged all images and completed a 3-D model of an intestine. This 3-D model was reformed as a 2-D plane image showing the inner side of the entire intestine. The proposed image composition was evaluated by the 3-D simulator, OpenGL. This approach was demonstrated successfully. A physician can find the location of a disease at a glance because the composite image provided an easy-to-understand view to show the patient's intestine and thereby shorten diagnosis time.

Human Body Communication Using Chirp Spread Spectrum Modulation (Chirp spread spectrum 변조를 이용한 인체 내외 통신 기법)

  • Kim, Kyung-Chul;Jeon, Myeong-Woon;Kim, Ki-Hyun;Lee, Jung-Woo;Nam, Sang-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.440-446
    • /
    • 2010
  • Convergence of IT and BT is considered in many area, especially in medical care industry. The example of this trend is a capsule endoscope. But in a capsule endoscope, communication through human body has a few restrictions. At first, the transmit power should be limited not to have a bad effect on human organs and for the battery capacity. Second, the channel characteristic of human body has not been examined exactly. Third, general modulation / demodulation techniques which require a channel estimation cannot be used because of battery limit. There also may be a lot of interference signals because a capsule endoscope uses UWB bandwidth. In this paper, we introduce Chirp Spread Spectrum Differential Binary Phase Shift Keying(CSS-DBPSK) and propose Chirp Spread Spectrum On-Off Keying(CSS-OOK) which don't require a channel estimation and robust to interference signals. Using CSS-DBPSK or CSS-OOK, we can get 5 dB or 2~3 dB of Eb/N0 gain at 10-5 target BER. And if there are interference signals, those gains of CSS-DBPSK and CSS-OOK are increased.

Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force (자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가)

  • Min, Hyun-Jin;Lim, Hyung-Jun;Kim, Byung-Kyu;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

Intelligent Diagnosis Assistant System of Capsule Endoscopy Video Through Analysis of Video Frames (영상 프레임 분석을 통한 대용량 캡슐내시경 영상의 지능형 판독보조 시스템)

  • Lee, H.G.;Choi, H.K.;Lee, D.H.;Lee, S.C.
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.33-48
    • /
    • 2009
  • Capsule endoscopy is one of the most remarkable inventions in last ten years. Causing less pain for patients, diagnosis for entire digestive system has been considered as a most convenience method over a normal endoscope. However, it is known that the diagnosis process typically requires very long inspection time for clinical experts because of considerably many duplicate images of same areas in human digestive system due to uncontrollable movement of a capsule endoscope. In this paper, we propose a method for clinical diagnosticians to get highly valuable information from capsule-endoscopy video. Our software system consists of three global maps, such as movement map, characteristic map, and brightness map, in temporal domain for entire sequence of the input video. The movement map can be used for effectively removing duplicated adjacent images. The characteristic and brightness maps provide frame content analyses that can be quickly used for segmenting regions or locating some features(such as blood) in the stream. Our experiments show the results of four patients having different health conditions. The result maps clearly capture the movements and characteristics from the image frames. Our method may help the diagnosticians quickly search the locations of lesion, bleeding, or some other interesting areas.

  • PDF