• Title/Summary/Keyword: capillary absorption

Search Result 73, Processing Time 0.027 seconds

Energy Harvesting System according to Moisture Absorption of Textile and Efficient Coating Method as a Carbon Black (섬유 고분자의 수분 흡수에 따른 에너지 하베스팅 발전 소자 및 이를 위한 카본 블랙의 효율적인 코팅법)

  • Choi, Seungjin;Chae, Juwon;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2021
  • Generating electricity by using water in many energy harvesting system is due to their simplicity, sustainability and eco-friendliness. Evaporation-driven moist-electric generators (EMEGs) are an emergent technology and show great potential for harvesting clean energy. In this study, we report a transpiration driven electro kinetic power generator (TEPG) that utilize capillary flow of water in an asymmetrically wetted cotton fabric coated with carbon black. When water droplets encounter this textile EMEG, the water flows spontaneously under capillary action without requiring an external power supply. First carbon black sonicated and dispersed well in three different solvent system such as dimethylformamide (DMF), sodiumdedecylbenzenesulfonate (SDBS-anionic surfactant) and cetyltrimethylammoniumbromide (CTAB-cationic surfactant). A knitted cotton/PET fabric was coated with carbon black by conventional pad method. Cotton/PET fabrics were immersed and stuttered well in these three different systems and then transferred to an autoclave at 120 ℃ for 15 minutes. Cotton/PET fabric treated with carbon black dispersed in DMF solvent generated maximum current up to 5 µA on a small piece of sample (2 µL/min of water can induce constant electric output for more than 286 hours). This study is high value for designing of electric generator to harvest clean energy constantly.

Effect of Cyclic Wetting-drying on Self-healing of Cementitious Materials Containing Superabsorbent Polymers (습윤/건조 반복 작용이 고흡수율 폴리머를 함유한 시멘트계 재료의 자기치유에 미치는 영향)

  • Hong, Geuntae;Choi, Seongcheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.88-96
    • /
    • 2020
  • In this study, the effect of cyclic wetting-drying on the self-healing of cementitious materials containing superabsorbent polymers (SAPs) were experimentally evaluated. In each cycle, cracked cement paste specimens containing various SAP dosages were exposed to wet conditions for 1 h, during which the capillary water absorption tests and water flow tests were conducted, and then exposed to dry conditions for 47 h. The capillary water absorption test results showed that the sorptivity values of the specimen without SAPs, SAP 0.5%, SAP 1.0%, and SAP 1.5% specimens were decreased by approximately 22.9%, 36.8%, 42.8%, and 46.3%, respectively, after 8 cycles. In addition, the water flow test results showed that the amount of water runoff through the cracks of all cracked specimens gradually decreased over wet/dry cycles, especially the reduction ratio of the amount of water runoff increased with increasing SAP dosage. Furthermore, the swelling behavior of SAPs in cracks by in gress water was con firmed via X-ray computed tomography (CT) analysis. These results indicate that the effective crack width can be reduced as SAPs absorb water and swell, while the water absorbed in SAPs can be released to crack surfaces under dry conditions, further promoting healing product formation. This study demon strates that the in corporation of SAPs can in crease the water tightness of cracks, thereby improving the self-healing efficiency of cementitious materials.

DETECTION OF PHYSIOLOGICAL PROCESSES IN WHEAT BY NIR

  • Salgo, A.;Gergely, Sz.;Scholz, E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1158-1158
    • /
    • 2001
  • Fast and dynamic biochemical, enzymatic and morphological changes occur during the so-called generative development and during the vegetative processes in seeds. The most characteristic biochemical and compositional changes of this period are the formation and decline of storage components or their precursors, the change of their degree in polymerization and an extensive change in water content. The aim of the present study was to detect the maturation processes in seed nondestructively and to verify the applicability of near infrared spectroscopic methods in the measurement of physiological, chemical and biochemical changes in wheat seed. The amount and variation of different water “species” has been changed intensively during maturation. Characteristic changes of three water absorption bands (1920, 1420 and 1150 nm) during maturation were analysed. It was concluded that the free/bound transition of water molecules could be followed sensitively in different region of NIR spectra. Kinetic changes of carbohydrate reserves were characteristic during maturation. An intensive formation and decline of carbohydrate reserves were observed during early stage of maturation (0 -13 days, high energy demand). An accelerated formation of storage carbohydrates (starch) was detected in the second phase of maturation. Five characteristic absorption bands were analysed which were sensitive indicators the changes of carbohydrates occurred during maturation. Precursors of protein synthesis and the synthesis of reserve proteins and their kinetic changes during maturation were followed from NIR spectra qualitative and qualitatively. Dynamic formation of amino acids and the changes of N forms were detected by spectroscopic, chromatographic and by capillary electrophoresis methods. Calibration equations were developed and validated in order to measure the optimal maturation time protein and moisture content of developing wheat seeds. The spectroscopic methods are offering chance and measurement potential in order to detect fine details of physiological processes. The spectra have many hidden details, which can help to understand the biochemical background of processes.

  • PDF

A study on the Optimum Design Configuration of Passive Solar TI-wall system (투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구)

  • Kim, Byoung-Soo;Yoon, Jong-Ho;Yoon, Yong-Jin;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

Preparation and Oil Absorption Properties of PAN Based 3D Shaped Carbon Nanofiber Sponge (폴리아크릴로니트릴 기반 3D 탄소나노섬유 스펀지의 제조 및 오일 흡착 특성)

  • Hye-Won Ju;Jin-Hyeok Kang;Jong-Ho Park;Jae-Kyoung Ko;Yun-Su Kuk;Changwoo Nam;Byoung-Suhk Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.217-223
    • /
    • 2023
  • In this work, the preparation and its oil adsorption behavior of polyacrylonitrile-based carbon nanofiber sponge were investigated. The prepared carbon sponges showed excellent selective oil adsorption in the mixture of water and oil, and the adsorption capacity of reused carbon nanofiber sponge was also investigated. Further, carbon nanofiber sponge adsorbent with internally structured channel showed fast oil adsorption behavior due to a capillary phenomenon. After use, sponge adsorbent was heat-treated at 800℃ under N2 and studied the possibility of a sensor for electrochemical detection of 4-aminophenol.

Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume

  • Mahdikhani, Mahdi;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.175-191
    • /
    • 2014
  • In recent years, the emergence of nanotechnology and nanomaterial has created hopes to improve various properties of concrete. Nano silica as one of these materials has been introduced as a cement replacement material for concrete mixture in construction applications. It can modify the properties of concrete, due to high pozzolanic reactions and also making a denser microstructure. On the other hand, it is well recognized that the use of mineral admixtures such as silica fume affects the mechanical properties and durability of cementitious materials. In addition, the superior performance of self-consolidating concrete (SCC) and self-consolidating mortars (SCM) over conventional concrete is generally related to their ingredients. This study investigates the effect of nano silica and silica fume on the compressive strength and chloride permeability of self-consolidating mortars. Tests include compressive strength, rapid chloride permeability test, water permeability, capillary water absorption, and surface electrical resistance, which carried out on twenty mortar mixtures containing zero to 6 percent of nano silica and silica fume. Results show that SCMs incorporating nano silica had higher compressive strength at various ages. In addition, results show that nano silica has enhanced the durability SCMs and reduced the chloride permeability.

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

An Experimental Study on the Effects of Porous Layer Treatment on Evaporative Cooling of an Inclined Surface (다공물질 표면처리가 경사판의 증발냉각에 미치는 영향에 관한 실험적 연구)

  • Lee Dae Young;Lee Jae Wan;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface forming thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this work, the surface is treated to have thin porous layer on the surface. With this treatment, the liquid can be spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of an inclined surface has been conducted to verify the effectiveness of the surface treatment. It is measured that the evaporative heat transfer increases about $50\%$ by the porous layer treatment as compared with that from orignal bare surfaces.

Physical and Mechanical Properties of Cementitious Specimens Exposed to an Electrochemically Derived Accelerated Leaching of Calcium

  • Babaahmadi, Arezou;Tang, Luping;Abbas, Zareen;Martensson, Per
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.295-306
    • /
    • 2015
  • Simulating natural leaching process for cementitious materials is essential to perform long-term safety assessments of repositories for nuclear waste. However, the current test methods in literature are time consuming, limited to crushed material and often produce small size samples which are not suitable for further testing. This paper presents the results from the study of the physical (gas permeability as well as chloride diffusion coefficient) and mechanical properties (tensile and compressive strength and elastic modulus) of solid cementitious specimens which have been depleted in calcium by the use of a newly developed method for accelerated calcium leaching of solid specimens of flexible size. The results show that up to 4 times increase in capillary water absorption, 10 times higher gas permeability and at least 3 times higher chloride diffusion rate, is expected due to complete leaching of the Portlandite. This coincides with a 70 % decrease in mechanical strength and more than 40 % decrease in elastic modulus.

Chemical Analysis of Water Soluble Aerosols at Kosan, Cheju lsland (제주도 고산에서 수용성 에어로졸의 화학적 성분 분석)

  • 이호근;박경윤;서명석;장광미;강창희;허철구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.245-252
    • /
    • 1995
  • Atmospheric aerosols were collected by a High Volume Tape Sampler from March 1992 to December 1993 ar Korean, Cheju, Korea. The water soluble ion concentrations in aerosol were analyzed. The concentrations of cations (N $a^{+}$, $K^{+}$, $Ca^{2+}$, $Mg^{2+}$, N $H_{4}$$^{+}$) were determined by an Inductively Coupled Plazma(ICP) or an Atomic Absorption Spectrometer(AAS), and those of anions (C $l^{[-10]}$ , N $O_{3}$$^{[-10]}$ , S $O_{4}$$^{2-}$) were analayzed by the capillary electrophoresis method. The $Ca^{2+}$, S $O_{4}$$^{2-}$ and N $O_{3}$$^{[-10]}$ concentrations in spring were higher than those in other seasons. The lowest concentrations of these elements were found in summer, largely due to scavenging by frequent rains. Especially the $Ca^{2+}$ concentration on April was three to four times higher than the annual mean concentration. The enrichment factor(E.F.) of each element was calculated. The annual mean E.F. values of the $Ca^{2+}$, $Mg^{2+}$ and C $l^{[-10]}$ in 1992 were the same as those in 1993 except $k^{+}$ and S $O_{4}$$^{2-}$. The correlation formula between all cations and anions for the whole period was Anions = 0.759 * Cations + 0.066.Cations + 0.066.

  • PDF