• Title/Summary/Keyword: capillary absorption

Search Result 73, Processing Time 0.029 seconds

Quality Properties of Blast Furnace Slag Brick Using the Recycled Fine Aggregates Depending on Waste Oil and Curing Method (폐식용유 혼입 및 양생방법에 따른 순환잔골재 사용 고로슬래그 벽돌의 품질특성)

  • Park, Kyung-Taek;Son, Ho-Jung;Kim, Dae-Gun;Kim, Bok-Kue;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.61-62
    • /
    • 2011
  • This study reviewed the effect of W/B, WO and curing method on the quality properties of RA using the BS brick under the zero cement condition. compressive strength was found to show an increasing trend as W/B increased, but to show a improvement in case steam curing was conducted, showing a higher increase at 1 day age in comparison with 7 day age. In addition, the compressive strength on the mixing of WO didn't show any specific trend. The absorption tended to decrease as W/B increased and met the less than 10% regulation value at 30~35% W/B in case WO was used, there appeared a decrease attributable to capillary pore filling effect due to saponification. On the other hand, compressive strength increases, th absorption showed a gradually decreasing tendency.

  • PDF

Effects of Interruption Layer for Capillary Rise on Salt Accumulation and Kentucky Bluegrass Poa pratensis Growth in Sand Growing Media over the Reclaimed Saline Soil (임해 간척지에서 모래상토 층에 모세관수 차단 층의 도입이 염류 집적과 켄터 키블루그래스 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.106-116
    • /
    • 2010
  • This research was conducted to determine the effect of interruption layer for capillary rise on the sand based growing media when growing Kentucky bluegrass (Poa pratensis L.) on soil reclamation and saline water irrigation. Growing media profile consists of three layers as top soil of 30 cm, 20 cm of the interruption layer for capillary rise and 10 cm of reclaimed paddy soil. Growing media profile was packed in 30 cm diameter column pots. The top soil was a mixture of sand dredged up from Lake Bhunam Tae Ahn, Korea and peat at the ratio of 95:5 by volume. Bottom part of column was covered with plastic net and the pots were soaked into 5 cm depth saline water reservoir with salinity $3-5\;dS\;m^{-1}$. Kentucky bluegrass was established by sod and irrigated using $2\;dS\;m^{-1}$ saline water ($5.7\;mm\;day^{-1}$) in 3 days interval. The results showed that the largest accumulation of salt in the spring with electrical conductivity in saturated extract (ECe) of $5.4\;dS\;m^{-1}$ and sodium absorption ratio (SAR) 34.0 in growing media without the interruption layer for capillary rise and ECe of $4.6\;dS\;m^{-1}$ and SAR 8.24 at growing media using gravel as the interruption layer for capillary rise material. The interruption layer for capillary rise of gravel and coarse sand reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the growing media. Visual quality of Kentucky bluegrass was higher in growing media with the interruption layer for capillary rise of gravel than no interruption layer by 8.3 compared to 7.9 in rates. The interruption layer for capillary rise of gravel and coarse sand enhanced the visual quality by 4.1 and 4.0%, root length by 50 and 38%, and root dry weight by 35 and 17% of Kentucky bluegrass, and reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the growing media.

Electrical resistivity and capillarity of self-compacting concrete with incorporation of fly ash and limestone filler

  • Silva, Pedro;de Brito, Jorge
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.65-84
    • /
    • 2013
  • Electrical resistivity is a property associated with both the physical and chemical characteristics of concrete. It allows the evaluation of the greater or lesser difficulty with which aggressive substances penetrate the concrete's core before the dissolution of the passive film process and the consequent reinforcement's corrosion begin. This work addresses the capillary absorption of self-compacting concrete (SCC) with various types and contents of additions, correlating it with its electrical resistivity. To that effect, binary and ternary mixes of SCC were produced using fly ashes (FA) and limestone filler (LF). A total of 11 self-compactable mixes were produced: one with cement (C) only; three with C + FA in 30%, 60% and 70% substitution ratios; three with C + LF in 30%, 60% and 70% substitution ratios; four with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% substitution ratios, respectively; and four reference mixes according to the LNEC E 464 specification, which refers to the NP EN 206-1 norm. The evaluation of the capillarity of the mixes produced was made through the determination of the water absorption by capillarity coefficient according to the LNEC E 393 specification. The electrical resistivity was evaluated using the European norm proposal presented by the EU-Project CHLORTEST (EU funded research Project under 5FP GROWTH programme) and based on the RILEM TC-154 EMC technical recommendation. The results indicate that SCC's capillarity is strongly conditioned by the type and quantity of the additions used. It was found that FA addition significantly improves some of the properties studied especially at older ages.

Sulfate Resistance of Alkali Activated Pozzolans

  • Bondar, Dali;Lynsdale, C.J.;Milestone, N.B.;Hassani, N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • The consequence of sulfate attack on geopolymer concrete, made from an alkali activated natural pozzolan (AANP) has been studied in this paper. Changes in the compressive strength, expansion and capillary water absorption of specimens have been investigated combined with phases determination by means of X-ray diffraction. At the end of present investigation which was to evaluate the performance of natural alumina silica based geopolymer concrete in sodium and magnesium sulfate solution, the loss of compressive strength and percentage of expansion of AANP concrete was recorded up to 19.4 % and 0.074, respectively.

Conservation Treatment of Stairway-side Stone Panels Taken Out from West Pagoda of Gameunsa-site (감은사지(感恩寺址) 서탑출토(西塔出土) 보단측면석(步段側面石)의 보존처리(保存處理))

  • Kim, Jongwoo;Jeong, Taehwa;Jeong, Suyeon
    • Conservation Science in Museum
    • /
    • v.9
    • /
    • pp.59-66
    • /
    • 2008
  • At platform-reinforcing side stone plate having been exhibited in outdoor exhibition space of Gyeongju National Museum, split and exfoliation were proceeding due to weathering at joined·restored parts. Accordingly we checked imbibitional minerals in the stone through observation and analysis with polarized microscope, and studied capillary water absorption rate using Schmidt Hammer rebound hardness measurement and Karsten Tube.

Analysis of Sterols and Its Hydrogenation to Stanols in Vegetable Oils for the Development of a Cholesterol Absorption-lowering Neutraceutical (콜레스테롤 흡수저하 기능성소재 개발을 위한 식물성 유지 중이 Sterols 분석 및 Stanol로의 수소첨가반응)

  • 인만진;김동청;채희정;김명희;임병순;김의용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.980-983
    • /
    • 1999
  • The contents of sterols and stanols in vegetable oils and mist oil were analyzed by gas chromatography using a capillary column. The total sterol contents showed high values of 0.67~0.89g/100g in corn oil, rice bran oil, red pepper seed oil and sesame oil. Mist oil, a byproduct of soybean oil manufacture, was a suitable raw material for the production of stanol since it showed high sterol content (10.2g/100g). In the hydrogenation of sterol contained in mist oil using Pd catalyst, the effects saponification of oil were examined. The conversion of sterol to stanol was improved by a factor of 4~5 through saponification of oil, compared to the reaction without saponification.

  • PDF

Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 오병환;차수원;신경준;하재담;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

Effect of the PC, diatomite and zeolite on the performance of concrete composites

  • Kocak, Yilmaz;Savas, Muhsin
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.815-829
    • /
    • 2016
  • This study has been carried out to investigate the effect of the surface properties of Portland cement, diatomite and zeolite on the performance of concrete composites. In this context, to describe the materials used in this study and determine the properties of them, chemical, physical, mineralogical, molecular, thermal, and zeta potential analysis have been applied. In the study, reference (Portland cement), 10%-20% diatomite, 10%-20% zeolite, 5+5%-10+10% diatomite and zeolite were substituted for Portland cement, a total of 7 different cements were obtained. Ultrasonic pulse velocity, capillary water absorption and compressive strength tests were performed on the hardened concrete specimens. Hardened concrete tests have been done on seven different types of concrete, for 28, 56 and 90 days. As a result of experiments it has been identified that both the zeolite and diatomite substitution has a positive effect on the performance of concrete.

Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood (참오동나무의 열처리가 기체투과성, 흡음율과 음향투과손실에 미치는 영향)

  • KANG, Chun-Won;JANG, Eun-Suk;JANG, Sang-Sik;Cho, Jae-Ik;KIM, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.644-654
    • /
    • 2019
  • In this study, the gas permeability, sound absorption coefficient, and sound transmission loss of the Paulownia tomentosa wood were estimated using capillary flow porometry, transfer function method, and transfer matrix method, respectively. The longitudinal specific permeability constant of the Paulownia tomentosa wood with a thickness of 20 mm was 0.254 for the control sample and 0.279, 0.314, and 0.452 after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$, respectively. The gas permeability was observed to be slightly increased by the heat treatment. The mean sound absorption coefficients of 20-mm thick Paulownia tomentosa log cross-section for the control sample and after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.101, 0.109, 0.096 and 0.106, respectively. Further, the noise reduction coefficients of 20-mm thick Paulownia tomentosa log cross-section of the control sample and after being subjected to heat treatment at temperatures of $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.060, 0.067, 0.062 and 0.071, respectively. The mean of sound transmission loss of the 20-mm thick Paulownia tomentosa log cross-section was approximately 36.93 dB. Furthermore, the gas permeability and sound absorption coefficient of the heat-treated Paulownia tomentosa discs slightly increased depending on the heat treatment temperature; however, the rate of increase was insignificant.

X-ray Induced Electron emission Spectroscopy

  • 송세안;이재철;최진학;김준홍;이재학;임창빈
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.191-191
    • /
    • 1999
  • Extended X-ray Absorption Fine Structure (EXAFS)는 일반적으로 널리 사용하는 X선 회절분광기로 분석하기 힘든 chemical 또는 biological system의 structural analyses에 매우 유용한 분석방법이다. 특히 세라믹이나 유전체 비정질 재료의 미세 원자 구조에 관한 정보를 얻는데는 가장 강력한 분석방법중의 하나로 알려져 있다. 현재까지 대부분의 EXAFS 실험은 방사광 가속기를 이용하여 수행하였다. 그런데 신제품 개발의 순환주기가 급속하게 단축되는 현실적인 문제에 부응하기 위하여 실험실에서 EXAFS 실험을 수행할 수 있는 system을 개발하게 되었다. 개발한 XIEES 장비는 rotating anode 형의 18kW X-ray source, Optical system, Detection system, Stepping motor control system, vacuum system, Utility 등으로 구성하였다. Optical system에서의 6개의 Johanson type monochromator를 사용하여 분석가능한 x-ray energy range를 480eV에서 41keV까지 구현하였다. 이는 산소에서 우라늄까지 분석이 가능함을 의미하는 것으로, 산화물 연구에 많이 활용할 것으로 기대한다. XIEES는 투과 및 형광 X-ray를 검출할 수 있는 기능과 X-ray에 의해 여기 되는 모든(광전자, Aiger 전자, 이차전자)들을 검출할 수 있는 기능을 갖추고 있는데 이를 Total Electron Yield 측정이라고 한다. Total Electron Yield 측정은 박막 시료와 같이 투과가 되지 않는 시료를 분석할 뿐만 아니라, 경원소 분석, 낮은 에너지에서 흡수 edge가 나타나는 L-edge 측정을 통한 전자 구조 분석 등에 유용한다. 실험실용 XIEES 장비는 방사광가속기에 비해 x-ray flux가 크게 뒤지는 문제와 Total Electron Yield를 측정하는 데 있어서 source에서 나오는 x-ray beam이 진공용기 안에서 산란되어 이차전자를 여기하고 이 이차전자들이 전자검출기에 유입되어 측정에 영향을 미치는 background 문제 등이 있다. 이 두 가지 문제를 해결하기 위하여 Capillary tube를 사용하였다. 본 연구에서는 실험실용 XIEES 장비를 소개하고 이를 이용하여 Cu standard 시료에서 측정한 EXAFS 결과와 Capillary tube를 사용하여 얻은 x-ray flux 증진 및 background 제거 효과에 대해서 발표한다.

  • PDF