• Title/Summary/Keyword: capillary GC

Search Result 142, Processing Time 0.018 seconds

Development of the analytical method for pesticide residues in crops by using gas chromatograph / solvent free solid injector (GC / SFSI) (무용매 고체 시료 주입기(SFSI)를 이용한 작물 중 잔류농약의 기체크로마토그래피 분석법 개발)

  • Kim, M.R.;Lee, Y.;Park, B.J.;Choi, J.H.;Kim, I.S.;Shim, J.H.
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.3
    • /
    • pp.237-242
    • /
    • 2005
  • This experiment was carried out to develop the fast and simple method for pesticide residue analysis by using solvent free solid injector (SFSI) and to validate the efficiency of the method developed for the residue analysis of the endocrine disruptor-like pesticides such as endosulfan, metribuzin, trifluralin and vinclozolin. The samples after freeze drying were sealed in glass capillary tubes and then introduced into the heated injector of gas chromatogaphy. The required pre-heating times were 1 min for endosulfan and trifluralin, 5 min for vinclozolin, and 10 min for metribuzin. The detection limits of endosulfan in chinese cabbages, metribuzin in lettuces, trifluralin in spinachs and vinclozolin in hot peppers were 0.05, 0.1, 0.05 and 0.05 ng, respectively and their recoveries were ranged from 74%, $98{\sim}107%$, $86{\sim}95%$ and $94{\sim}95%$, respectively. The detected level of metribuzine residue in field lettuce samples by using the SFSI was 0.6 ng/mg.

A study on removal effect of Endosulfan in soil and aquatic system (수질 및 토양 중 Endosulfan 제거효과에 관한 연구)

  • An, Jung-Hyeok;Lee, Seog-Jong;Lee, Woan;Kim, Joon-Bum;Lee, Gwang-Chun;Kwon, Young-Du;Jeon, Choong;Park, Kwang-Ha
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2006
  • In this study, a series of experiments were conducted using a standard solution containing ${\alpha}$ and ${\beta}$-endosulfan to follow the removal effect of residual pesticides on soil and aqueous solution. An analytical method for residual pesticides was established by a gas chromatography equipped Ultra II[$(30m{\times}0.25mm(ID){\times}0.25{\mu}m$] capillary column and a ${\mu}$-electron capture detector(${\mu}$-ECD). Recovery rates of residual pesticides for soil samples were 96-100%. The amount of ${\alpha}$ and ${\beta}$-endosulfan that was spread in the soil was checked for various period of time. It indicated that the amount was reduced to 73 and 61%, respectively. When the water spread amount increased from 10 to 100 mL, ${\alpha}$-endosulfan was eliminated from 45 to 85% and while ${\beta}$-endosulfan from 44 to 88%. Removal rates of ${\alpha}$-endosulfan and ${\beta}$-endosulfan were 99% and 98% respectively within 30 minutes. It was assumed that the organic salts and strong alkali elements contained in the pesticide degradator hydrolyzed the residual pesticide.