• Title/Summary/Keyword: capacitor-input

Search Result 528, Processing Time 0.03 seconds

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1277-1287
    • /
    • 2016
  • This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.

Optimal Design of a Damped Input Filter Based on a Genetic Algorithm for an Electrolytic Capacitor-less Converter

  • Dehkordi, Behzad Mirzaeian;Yoo, Anno;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.418-429
    • /
    • 2009
  • In this paper an optimal damped input filter is designed based on a Genetic Algorithm (GA) for an electrolytic capacitor-less AC-AC converter. Sufficient passive damping and minimum losses in passive damping elements, minimization of the filter output impedance at the filter cut-off frequency, minimization of the DC-link voltage and input current fluctuations, and minimization of the filter costs are the main objectives in the multi-objective optimization of the input filter. The proposed filter has been validated experimentally using an induction motor drive system employing an electrolytic capacitor-less AC-AC converter.

A Control Method to Mitigate the Influence of Input Capacitor in Photovoltaic Power Curtailment (태양광 출력 감발 시 입력 커패시터 영향 완화를 위한 제어 방법)

  • Yang, Hyoung-Kyu;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.106-111
    • /
    • 2021
  • This study proposes a control method to mitigate the influence of input capacitors in photovoltaic power curtailment. The influence is analyzed by the power flow in the photovoltaic system. In conventional power curtailment, the power injected to the grid may be increased momentarily because the influence of the input capacitor on the power injected to the grid is not considered. The proposed method limits the change rate of photovoltaic array voltage to prevent a momentary increase in the power injected to the grid. The effectiveness of proposed method, which reduces power overshoot, is verified by experimental tests. The proposed method enables the power grid to operate stably in photovoltaic power curtailment.

LCCT Z-Source DC-DC Converter with the Bipolar Output Voltages for Improving the Voltage Stress and Ripple (전압 스트레스와 맥동이 개선된 양극성 출력 전압을 갖는 LCCT Z-소스 DC-DC 컨버터)

  • Park, Jong-Ki;Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2013
  • This paper proposes the improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source DC-DC converter (Improved LCCT ZSDC) which can generate the bipolar output voltages according to duty ratio D. The proposed converter has the characteristic and structure of Quasi Z-source DC-DC converter(Quasi ZSDC) and conventional LCCT Z-source DC-DC converter(LCCT ZSDC). To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed for each converter. In case which the input DC voltage is 70V, the bipolar output DC voltage of positive 90V and negative 50V could generate. Also, as comparison result of the capacitor voltage ripple in Z-network and the input current under the same condition for each converter, the voltage stress and the capacitor voltage in Z-network of the proposed method were lower compared with the conventional methods. Finally, the efficiency for each method was investigated according to load variation and duty ratio D.

Design of Input.Output Filter of Single Multifunctional UPS (단상 다기능 UPS 입.출력 필터 설계)

  • 김제홍
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.307-310
    • /
    • 2002
  • A design for the input filter and the output filter of a single-phase UPS system is proposed. And also, this paper describes a reduction of the DC voltage ripple of a single-phase UPS. The input power of proposed UPS fluctuates with twice frequency of the utility source, which causes DC voltage fluctuation. The reduction of the DC voltage fluctuation requires a large DC link capacitor. The proposed method uses a LC series resonant filter paralleled with a conventional smoothing capacitor. The effectiveness of the proposed method was confirmed by simulation results.

  • PDF

The study on DC-link Film Capacitor in 3 Phase Inverter System for the Consideration of Frequency Response (3상 인버터 시스템에서 주파수 특성을 고려한 필름 콘덴서의 DC-link 적용 방법에 관한 연구)

  • Park, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.117-122
    • /
    • 2018
  • A large-capacity three-phase system air conditioner recently includes an inverter circuit to reduce power consumption. The inverter circuit uses a DC voltage that comes from DC-link power capacitor with the function of rectifying, which means AC voltage to DC voltage using a diode. An electrolytic capacitor is generally used to satisfy the voltage ripple and current ripple conditions of a DC-link power capacitor used for rectifying. Reducing the capacitance of the capacitor decreases the size, weight, and cost of the circuit. This paper proposes an algorithm to reduce the input ripple current by combining the minimum point estimation phase locked loop (PLL) phase control and the average voltage d axis current control technique. When this algorithm was used, the input ripple current decreased by almost 90%. The current ripple of the DC-link capacitor decreased due to the decrease in input ripple current. The capacitor capacity can be reduced but the electrolytic capacitor has a heat generation problem and life-time limitations because of its large equivalent series resistance (ESR). This paper proposes a method to select a film capacitor considering the current ripple at DC-link stage instead of an electrolytic capacitor. The capacitance was selected considering the voltage limitation, RMS (Root Mean Square) current capacity, and RMS current frequency analysis. A $1680{\mu}F$ electrolytic capacitor can be reduced to a $20{\mu}F$ film capacitor, which has the benefit of size, weight and cost. These results were verified by motor operation.

The Single-Phase Voltage-Doubler AC-DC Converter by using a Boost Capacitor (승압용 커패시터를 이용한 단상 배전압 AC-DC 컨버터)

  • Jung, S.H.;Kim, S.D.;Lee, S.H.;Lee, H.W.;Chun, J.H.;Chung, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1103-1105
    • /
    • 2002
  • A conventional AC-DC boost converter has much variation of input current as more increased the load or output voltage by the hysterical control method that is comparing area of current pulse by using PWM method and integration to sinusoidal input current. To improve the problems. in this paper, we propose the single-phase voltage doubler AC-DC converter circuit using the capacitor for boost:confirm characteristics of normal and transition state by using simulation, be stabilized voltage of doubler capacitor for boost, and Identify to get the sinusoidal input current with unity power factor.

  • PDF

Voltage Balancing Control of Input Voltage Source Employing Series-connected Capacitors in 7-level PWM Inverter (7-레벨 PWM 인버터의 직렬 커패시터 입력전원의 전압균형제어)

  • Kim, Jin-San;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.209-215
    • /
    • 2018
  • This paper present a 7-level PWM inverter adopting voltage balancing control to series-connected input capacitors. The prior proposed 7-level PWM inverter consists of dc input source, three series-connected capacitors, two bidirectional switch modules, and an H-bridge. This circuit topology is useful to increase the number of output voltage levels, however it fails to generate 7-level in output voltage without consideration for voltage balancing among series-connected capacitors. Capacitor voltage imbalance is caused on the different period between charging and discharging of capacitor. To solve this problem, we uses the amplitude modulation of carrier wave, which is used to produce the center output voltage level. To verify the validity of the proposed control method, we carried out computer-aided simulation and experiments using a prototype.

Input and Output Control of PWM Rectifiers using a Nonlinear Control Technique (비선형 제어기법을 이용한 PWM 정류기의 입출력 제어)

  • Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.701-708
    • /
    • 1999
  • The PWM rectifiers are capable of supplying sinusoidal current control and unity power factor control on the input side and dc output voltage control on the output side. By applying nonlinear control to the PWM rectifiers, the responses of input current and output voltage can be improved and due to fast voltage control the output electrolytic capacitor can be reduced remarkably. In addition, it is checked whether or not the current capacity of the reduced-size capacitor allows the ripple current of the rectifier. The nonlinear control technique gives a good performance for supply voltage disturbances. The validity of the proposed scheme has been verified by the experiment using DSP.

  • PDF

The analysis for appropriate value of the input capacitor in dispersed generation PV inverter (PV 분산전원용 인버터의 입력 커패시터 용량 결정을 위한 해석)

  • Lee, Kyung-Soo;Jung, Young-Seck;So, Jung-Hun;Yu, Gwon-Jong;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1362-1364
    • /
    • 2003
  • Most of PV(Photovoltaic) inverters are utilizing voltage source type. Normally in this type, an input capacitor is connected at the input of a inverter to keep dc voltage constant. However, it does not seem to be well known how to determine the appropriate value of the capacitor. By developing non-linear transient analysis, the author suggest an approach to give a guideline. An Implicit trapezoidal formula was used to do this calculation.

  • PDF