• Title/Summary/Keyword: capacitive touch sensing

Search Result 20, Processing Time 0.02 seconds

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.78-82
    • /
    • 2011
  • This paper proposes a new circuit for capacitive sensing based on Dickson's charge pump. The proposed touch sensing circuit includes three stages of NMOS diodes and capacitors for charge transfer. The proposed circuit which has a simplified capacitive touch sensor model has been analyzed and simulated by Spectre using Magna EDMOS technology. Looking from the simulation results, the proposed circuit can effectively be used as a capacitive touch sensing circuit. Moreover, a simple structure can provide maximum flexibility for making a digitally-controlled touch sensor driver with lowpower operations.

Mixed-Mode Simulations of Touch Screen Panel Driver with Capacitive Sensor based on Improved Charge Pump Circuit (개선된 charge pump 기반 정전 센싱 회로를 이용한 터치 스크린 패널 드라이버의 혼성모드 회로 분석)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-324
    • /
    • 2012
  • This paper introduces a 2-dimensional touch screen panel driver based on an improved capacitive sensing circuit. The improved capacitive sensing circuit based on charge pump can eliminate the remaining charges of the intermediate nodes, which may cause output voltage drift. The touch screen panel driver with mixed-mode circuits was built and simulated using Cadence Spectre. Verilog-A models the digital circuits effectively and enables them to interface with analog circuits easily. From the simulation results, we can verify the reliable operations of the simple structured touch screen panel driver based on the improved capacitive sensing circuit offering no voltage drift.

Multi-touch Recognition and Tracking for Self Capacitive TSP (자기정전용량 방식의 TSP에서 멀티터치 인식 및 추적)

  • Jung, Sung Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.136-140
    • /
    • 2014
  • This paper introduces a multi-touch recognition and tracking method for self capacitive TSP(Touch Screen Pannel). Self capacitive TSP recognizes finger touches by sensing capacitive change of ITO transparent conducting film arranged by rows and columns on the TSP pannel. They have some advantages such as high SNR, fast sensing, and simple touch processing, but have very difficulties for multi-touch processing. This disadvantage makes that the mutual capacitive TSPs, which have no such disadvantage, have been more widely used especially for multi-touch applications. However, since the other applications for remote control pad or recently developed wearable devises have only restrictive requirements for multi-touch, the disadvantage of self capacitive TSP is not a critical problem. In this paper, we first describe multi-touch recognition problems in self capacitive TSP and then propose how to overcome those problems and a tracking method of two touches when they are moving. Experimental results of our method showed that our algorithm works well in two touches.

A Design of Multi-Channel Capacitive Touch Sensing ASIC for SoC Applications in 0.18 ${\mu}m$ CMOS Process (0.18 ${\mu}m$ CMOS 공정을 이용한 SoC용 정전 용량형 멀티 채널 터치 센싱 ASIC의 설계)

  • Nam, Chul;Pu, Young-Gun;Park, Joon-Sung;Hong, Seong-Hwa;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.26-33
    • /
    • 2010
  • This paper presents a multi-channel capacitive touch sensing unit for SoC applications. This unit includes a simple common processing unit and switch array to detect the touch sensing input by capacitive-time(C-T) conversion method. This touch sensor ASIC is designed based on the Capacitive-Time(C-T) conversion method to have advantages of small current and chip area, and the minimum resolution of the unit is 41 fF per count with the built-in sensing oscillator, LDO regulator and $I^2C$ for no additional external components. This unit is implemented in 0.18 um CMOS process with dual supply voltage of 1.8 V and 3.3 V. The total power consumption of the unit is 60 uA and the area is 0.26 $mm^2$.

A Design of Full Digital Capacitive Sensing Touch Key Reducing The Effects Due to The Variations of Resistance and Clock Frequency (저항과 클록 주파수 변동에 의한 문제를 감소시킨 풀 디지털 방식 정전용량 센싱 터치키 설계)

  • Seong, Kwong-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.39-46
    • /
    • 2009
  • In this paper, we propose a full digital capacitive sensing touch key reducing the effects due to the variations of resistance and clock frequency. The proposed circuit consists of two capacitive loads to measure and a resistor between the capacitive loads. The method measures the delays of the resistor and two capacitive loads, respectively. The ratio of the two delays is represented as the ratio of the two capacitive loads and is irrelative to the resistance and the clock frequency if quantization error is disregarded. Experimental results show the proposed scheme efficiently reduces the effects due to the variations of clock frequency and resistance. Further more the method has l.04[pF] resolution and can be used as a touch key.

A Design of Capacitive Sensing Touch Sensor Using RC Delay with Calibration (캘리브래이션 기능이 있는 RC지연 정전용량 방식 터치센서 설계)

  • Seong, Kwang-Su;Lee, Mu-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.80-85
    • /
    • 2009
  • In this paper, we propose a full digital capacitive sensing touch key reducing the effects due to the variations of resistance and clock frequency. The proposed circuit consists of two capacitive loads to measure and a resistor between the capacitive loads. The method measures the delays of the resistor and two capacitive loads, respectively. The ratio of the two delays is represented as the ratio of the two capacitive loads and is irrelative to the resistance and the clock frequency if quantization error is disregarded. Experimental results show the proposed scheme efficiently reduces the effects due to the variations of clock frequency and resistance. Further more the method has 1.04[pF] resolution and can be used as a touch key.

LCD Embedded Hybrid Touch Screen Panel Based on a-Si:H TFT

  • You, Bong-Hyun;Lee, Byoung-Jun;Lee, Jae-Hoon;Koh, Jai-Hyun;Takahashi, Seiki;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.964-967
    • /
    • 2009
  • A new hybrid-type touch screen panel (TSP) has been developed based on a-Si:H TFT which can detect the change of both $C_{LC}$ and photo-current. This TSP can detect the difference of $C_{LC}$ between touch and no-touch states in unfavorable conditions such as dark ambient light and shadows. The hybrid TSP sensor consists of a detection area which includes one TFT for photo sensing and two TFTs for amplification. Compared to a single internal capacitive TSP or an optical sensing TSP, this new proposed hybrid-type TSP enables larger sensing margin due to embedding of both optical and capacitive sensors.

  • PDF

Capacitive Touch Sensor Pixel Circuit with Single a-InGaZnO Thin Film Transistor (단일 a-InGaZnO 박막 트랜지스터를 이용한 정전용량 터치 화소 센서 회로)

  • Kang, In Hye;Hwang, Sang Ho;Baek, Yeong Jo;Moon, Seung Jae;Bae, Byung Seong
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.133-138
    • /
    • 2019
  • The a-InGaZnO (a-IGZO) thin film transistor (TFT) has the advantages of larger mobility than that of amorphous silicon TFTs, acceptable reliability and uniformity over a large area, and low process cost. A capacitive-type touch sensor was studied with an a-IGZO TFT that can be used on the front side of a display due to its transparency. A capacitive sensor detects changes of capacitance between the surface of the finger and the sensor electrode. The capacitance varies according to the distance between the sensor plate and the touching or non-touching of the sensing electrode. A capacitive touch sensor using only one a-IGZO TFT was developed with the reduction of two bus lines, which made it easy to reduce the pixel pitch. The proposed sensor circuit maintained the amplification performance, which was investigated for various drive conditions.

Characteristics of Surface Micromachined Capacitive Pressure Sensors for High Temperature Applications (표면 MEMS 기술을 이용한 고온 용량형 압력센서의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper reports the fabrication and characterization of surface micromachined poly 3C-SiC capacitive pressure sensors on silicon wafer operable in touch mode and normal mode for high temperature applications. FEM(finite elements method) simulation has been performed to verify the analytical mode. The sensing capacitor of the capacitive pressure sensor is composed of the upper metal and the poly 3C-SiC layer. Measurements have been performed in a temperature range from $25^{\circ}C$ to $500^{\circ}C$. Fabrication process of designed poly 3C-SiC touch mode capacitive pressure sensor was optimized and would be applicable to capacitive pressure sensors that are required high precision and sensitivity at high pressure and temperature.

GripLaunch: a Novel Sensor-Based Mobile User Interface with Touch Sensing Housing

  • Chang, Wook;Park, Joon-Ah;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2006
  • This paper describes a novel way of applying capacitive sensing technology to a mobile user interface. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensing system is carefully designed and installed underneath the housing of the mobile device to capture the information of the user's grip-pattern. The captured data is then recognized by dedicated recognition algorithms. The feasibility of the proposed user interface system is thoroughly evaluated with various recognition tests.