• Title/Summary/Keyword: capacitive performance

Search Result 200, Processing Time 0.021 seconds

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part I : Preparation and Characterization of Heterogeneous Ion Exchange Membranes (폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식탈염공정의 탈염 성능 Part I : 불균질 이온교환막의 제조 및 특성)

  • Park, Cheol Oh;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • In this study, heterogeneous ion exchange membranes were prepared by mixing cation or anion exchange resins and commercial polyvinylidene fluoride (PVDF) for MCDI process. The mixing ratios of PVDF and ion exchange resins were 1 : 1, 1.4 : 1, 2 : 1, and 3 : 1. We characterized SEM, water content, ion exchange capacity, methanol permeability, and ion conductivity. In the viewpoint of membrane characterization, the blending ratio of 2 : 1 showed the best. For the blending ratio of 2 : 1, heterogeneous cation exchange membrane showed the water content 34%, ion exchange capacity 1.54 meq/g, ion conductivity 0.019 S/cm, and methanol permeability $2.28{\times}10^{-7}{\sim}8.86{\times}10^{-7}cm^2/s$ while In the case of heterogeneous anion exchange membrane, the result showed 37%, 2.18 meq/g, and 0.034 S/cm and $1.46{\times}10^{-7}{\sim}8.66{\times}10^{-7}cm^2/s$.

Electrochemical Ion Separation Technology for Carbon Neutrality (탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술)

  • Hwajoo Joo;Jaewuk Ahn;Sung-il Jeon;Jeyong Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.331-346
    • /
    • 2023
  • Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

A Simple Average Power Theory and Modified Compensation Performance Evaluation of Active Power Filters (능동전력필터의 간단한 평균전력이론과 수정된 보상성능 평가법)

  • 정영국;임영철;양승학
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.64-72
    • /
    • 1999
  • The fictitious power theory in time domain is very easy to understand, but power analyzing speed of active power is increased, because power is analyzed using signal tedmiques based on the corre1ation between voltage and current wavefonns. Also, conventional methods in time/frequency domain to evaluate the correlation performance of active power filters are not provided easy solutions. So, the authors have previously proposed 3-D current coordinates which is composed into active component, fundarrental reactive component and distorted component of nonlinear loads current. This trethod has excellent perfonnance, but can not evaluate the characteristics of nonlinear load current whether It is inductive or capacitive. Therefore, To overcorre problems trentioned previously, this paper deals with the simple average power theory and the modified 3-D current coordinates for evaluating the compensation perfonnance of active power filters. To confirm the validity, active power filter simulator is developed using C-language. From the simulation, results are discussed their utility.tility.

  • PDF

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.

PEDOT:PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated δ-MnO2

  • Sinan, Neriman;Unur, Ece
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.50-59
    • /
    • 2020
  • Birnessite-type manganese dioxide (δ-MnO2) with hierarchical micro-/mesoporosity was synthesized via sacrificial graphene template approach under mild hydrothermal conditions for the first time. Graphene template was obtained by a surfactant (cetyltrimethylammonium bromide, CTAB) assisted liquid phase exfoliation (LPE) in water. A thin PEDOT:PSS (poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate)) layer was applied to improve electrical conductivity and rate capability of MnO2. The MnO2 (535 F g-1 at 1 A g-1 and 45 F g-1 at 10 A g-1) and MnO2/PEDOT:PSS nanocomposite (550 F g-1 at 1 A g-1 and 141 F g-1 at 10 A g-1) delivered electrochemical performances superior to their previously reported counterparts. An asymmetric supercapacitor, composed of MnO2/PEDOT:PSS (positive) and Fe3O4/Carbon (negative) electrodes, provided a maximum specific energy of 18 Wh kg-1 and a maximum specific power of 4.5 kW kg-1 (ΔV= 2 V, 1M Na2SO4) with 85% capacitance retention after 1000 cycles. The graphene-templated MnO2/PEDOT:PSS nanocomposite obtained by a simple and green approach promises for future energy storage applications with its remarkable capacitance, rate performance and cycling stability

Design and Fabrication of an Electronic Voltage Transformer (EVT) Embedded in a Spacer of Gas Insulated Switchgears (가스절연개폐장치의 스페이서 내장형 전자식 변압기의 설계 및 제작)

  • Lim, Seung-Hyun;Kim, Nam-Hoon;Kim, Dong-Eon;Kim, Seon-Gyu;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2022
  • Bulky iron-core potential transformers (PT) are installed in a tank of gas insulated switchgears (GIS) for a system voltage measurement in power substations. In this paper, we studied an electronic voltage transformer (EVT) embedded in a spacer for miniaturization, eco-friendliness, and performance improvement of GIS. The prototype EVT consists of a capacitive probe (CP) that can be embedded in a spacer and a voltage Follower with a high input and a low output impedance. The CP was fabricated in the form of a Flexible-PCB to acquire the insulation performance and to withstand vibration and shock during operation. Voltage ratio of the prototype EVT is about 42,270, and the frequency bandwidth of -3 dB ranges from 0.33 Hz to 3.9 MHz. The voltage ratio error evaluated at about 6%, 12% and 18% of the rated voltage of 170 kV was 0.32%, and the phase error was 12.9 minutes. These results were within the accuracy for the class 0.5 specified in IEC 60044-7 and satisfy even in ranges from 80% to 120% of the rated voltage. If the prototype EVT replaces the conventional iron-core potential transformer, it is expected that the height of the GIS could be reduced by 11% and the amount of SF6 will be reduced by at least 10%.

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • SHRESTHA, Dibyashree
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.219-236
    • /
    • 2022
  • Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

Design and Fabrication of an LPVT Embedded in a GIS Spacer (GIS 스페이서 내장형 저전력 측정용 변압기의 설계 및 제작)

  • Seung-Gwan Park;Gyeong-Yeol Lee;Nam-Hoon Kim;Cheol-Hwan Kim;Gyung-Suk Kil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.175-181
    • /
    • 2024
  • In electrical power substations, bulky iron-core potential transformers (PTs) are installed in a tank of gas-insulated switchgear (GIS) to measure system voltages. This paper proposed a low-power voltage transformer (LPVT) that can replace the conventional iron-core PTs in response to the demand for the digitalization of substations. The prototype LPVT consists of a capacitive voltage divider (CVD) which is embedded in a spacer and an impedance matching circuit using passive components. The CVD was fabricated with a flexible PCB to acquire enough insulation performance and withstand vibration and shock during operation. The performance of the LPVT was evaluated at 80%, 100%, and 120% of the rated voltage (38.1 kV) according to IEC 61869-11. An accuracy correction algorithm based on LabVIEW was applied to correct the voltage ratio and phase error. The corrected voltage ratio and phase error were +0.134% and +0.079 min., respectively, which satisfies the accuracy CL 0.2. In addition, the voltage ratio of LPVT was analyzed in ranges of -40~+40℃, and a temperature correction coefficient was applied to maintain the accuracy CL 0.2. By applying the LPVT proposed in this paper to the same rating GIS, it can be reduced the length per GIS bay by 11%, and the amount of SF6 by 5~7%.

Development of Smartphone Control Jacket Using Textile Touch Sensor (텍스타일 터치센서를 활용한 스마트폰 제어 기능 재킷 개발)

  • Park, Jinhee;Kim, Ji-seon;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.5
    • /
    • pp.140-157
    • /
    • 2020
  • The purpose of this study is to develop three functions for smartphones and PCs using a textile touch sensor in an everyday sports jacket and to present their usefulness; to this end, we have developed a mutual capacitive textile touch sensor and corresponding structure, and we have implemented three functions into a textile touch sensor jacket, of which we also conducted a usability evaluation. The jacket has a sensor on the wrist of the left sleeve and a device on the left arm. The sensor system can be divided into three main categories: a sensor acting as a switch, a circuit connecting the sensor and the device, and the device that acts as power control and system on/off. The functions are implemented in the texture touch sensor jacket in three modes: cell phone mode, music mode, and PPT presentation mode. We conducted an evaluation of each function in each mode, which indicated that all functions performed well without errors and that the switch had excellent operation for the number and intensity of touch. In terms of usability in a humid environment, the performance of touch functions was found to be equally implemented. In the temperature environment, neither high nor low temperatures caused issues with the functions. A wearing satisfaction assessment evaluated psychological satisfaction, clothing convenience, device convenience, device usability, and device effectiveness. This research jacket is thought to be desirable for the relatively bendable, flexible, and intimate sensor used on the clothing, and the circuit made of conductive fabric tape.

Analysis of a Harmonics Neutralized 48-Pulse STATCOM with GTO Based Voltage Source Converters

  • Singh, Bhim;Saha, Radheshyam
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.391-400
    • /
    • 2008
  • Multi-pulse topology of converters using elementary six-pulse GTO - VSC (gate turn off based voltage source converter) operated under fundamental frequency switching (FFS) control is widely adopted in high power rating static synchronous compensators (STATCOM). Practically, a 48-pulse ($6{\times}8$ pulse) configuration is used with the phase angle control algorithm employing proportional and integral (PI) control methodology. These kinds of controllers, for example the ${\pm}80MVAR$ compensator at Inuyama switching station, KEPCO, Japan, employs two stages of magnetics viz. intermediate transformers (as many as VSCs) and a main coupling transformer to minimize harmonics distortion in the line and to achieve a desired operational efficiency. The magnetic circuit needs altogether nine transformers of which eight are phase shifting transformers (PST) used in the intermediate stage, each rating equal to or more than one eighth of the compensator rating, and the other one is the main coupling transformer having a power rating equal to that of the compensator. In this paper, a two-level 48-pulse ${\pm}100MVAR$ STATCOM is proposed where eight, six-pulse GTO-VSC are employed and magnetics is simplified to single-stage using four transformers of which three are PSTs and the other is a normal transformer. Thus, it reduces the magnetics to half of the value needed in the commercially available compensator. By adopting the simple PI-controllers, the model is simulated in a MATLAB environment by SimPowerSystems toolbox for voltage regulation in the transmission system. The simulation results show that the THD levels in line voltage and current are well below the limiting values specified in the IEEE Std 519-1992 for harmonic control in electrical power systems. The controller performance is observed reasonably well during capacitive and inductive modes of operation.