• 제목/요약/키워드: capacitance behaviors

검색결과 58건 처리시간 0.023초

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

EDLC용 Carbon-PTFE 전극의 제조 및 전기화학적 특성 (Preparation and Electrochemical Performance of Carbon-PTFE Electrode for Electric Double Layer Capacitor)

  • 김익준;이선영;문성인
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.833-839
    • /
    • 2005
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black : $PTFE\;=\;95-X\;:\;X\;:\;5wt.\%$. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 : carton black $PTFE\;=\;80\;:\;15\;:\;5wt.\%$. These behaviors could be explained by the network structure of PTFE fibrils and conducting Paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with $15wt.\%$ of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black $CMC\;=\;70\;:\;30wt.\%$, has exhibited the best rate capability between $0.5\;mA/cm^2\~100\;mA/cm^2$ current density and the lowest ESR.

EDLC용 Carbon-PTFE 전극의 전기화학적 특성에 미치는 변수 연구 (Study of Parameters on the Electrochemical Properties of Carbon-PTFE Electrode for Electric Double Layer Capacitor)

  • 김익준;양선혜;전민제;문성인;김현수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.355-356
    • /
    • 2006
  • This work describes the effect of the number of roll pressing and the composition of carbon black on the electric and mechanical properties of carbon-PTFE electrode, in which composition is MSP20 : carbon black: PTFE = 95-X : X : 5 wt.%. It was found that the best electric and mechanical properties were obtained for sheet electrode roll pressed about 15 times and for sheet electrode, in which composition is MSP20 carbon black : PTFE = 80 : 15 : 5 wt%. These behaviors could be explained by the network structure of PTFE fibrils and conducting paths linked with carbon blacks, respectively. On the other hand, cell capacitor using the sheet electrode with 15 wt.% of carbon black attached on aluminum current collector with the electric conductive adhesive, in composition is carbon black : CMC = 70 : 30 wt.%, has exhibited the best rate capability between 0.5 $mA/cm^2$ ~ 100 $mA/cm^2$ current density and the lowest ESR.

  • PDF

활성탄소 전극의 제조방식에 따른 EDLC 특성비교 (Comparison of Electrochemical Properties of EDLCs using Activated Carbon Electrodes Fabricated with Various Binders)

  • 양선혜;전민제;김익준;문성인;김현수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.353-354
    • /
    • 2006
  • This work describes the effect of binders, such as carboxymethylcellulose (CMC), CMC+Polytetrafluoroethylene (PTFE) and PTFE, on the electrochemical and mechanical properties of activated carbon-electrode for electric double layer capacitor. The cell capacitors using the electrode bound with binary binder composed of CMC and PTFE, especially m composition CMC ; PTFE = 60 : 40 wt %, has exhibited the better rate capability and the lower internal resistance than those of the cell capacitor with CMC. On the other hand, the sheet type electrode kneaded with PTFE was bonded with conductive adhesive on Al foil. This cell capacitor using the electrode with PTFE exhibited the best mechanical properties and rate capability compared to the CMC and CMC+PTFE one These behaviors could be explained by the well-developed network structure of PTFE fibrils during the kneading process.

  • PDF

고농도의 Ge 함량을 가진 Biaxially Strained SiGe/Si Channel Structure의 정공 이동도 특성 (Hole Mobility Characteristics of Biaxially Strained SiGe/Si Channel Structure with High Ge Content)

  • 정종완
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.44-48
    • /
    • 2008
  • Hole mobility characteristics of two representative biaxially strained SiGe/Si structures with high Ge contents are studied, They are single channel ($Si/Si_{1-x}Ge_x/Si$ substrate) and dual channel ($Si/Si_{1-y}Ge_y/Si_{1-x}Ge_x/Si$ substrate), where the former consists of a relaxed SiGe buffer layer with 60 % Ge content and a tensile-strained Si layer on top, and for the latter, a compressively strained SiGe layer is inserted between two layers, Owing to the hole mobility performance between a relaxed SiGe film and a compressive-strained SiGe film in the single channel and the dual channel, the hole mobility behaviors of two structures with respect to the Si cap layer thickness shows the opposite trend, Hole mobility increases with thicker Si cap layer for single channel structure, whereas it decreases with thicker Si cap layer for dual channel. This hole mobility characteristics could be easily explained by a simple capacitance model.

EDLC용 활성탄소 전극의 전기화학적 기계적 특성에 미치는 바인더의 영향 (Effect of Binders on Electrochemical and Mechanical Properties of Activated Carbon Electrode for Electric Double Layer Capacitor)

  • 전민제;김익준;양선혜;문성인;김현수;오대희
    • 한국전기전자재료학회논문지
    • /
    • 제19권12호
    • /
    • pp.1167-1171
    • /
    • 2006
  • This work describes the effect of binders, such as carboxymethylcellulose (CMC), CMC+ Polytetrafluoroethylene (PTFE) and PTFE, on the electrochemical and mechanical properties of activated carbon-electrode for electric double layer capacitor. The cell capacitors using the electrode bound with binary binder composed of CMC and PTFE, especially in composition CMC PTFE = 60 : 40 wt.%, has better rate capability and the lower internal resistance than those of the cell capacitor with CMC. On the other hand, the sheet type electrode kneaded with PTFE was bonded with conductive adhesive on Al foil. This cell capacitor using the electrode with PTFE exhibited the best mechanical properties and rate capability compared to the CMC and CMC+PTFE one. These behaviors could be explained by the well-developed network structure of PTFE fibrils doting the kneading process.

Electrochemical Properties of Polyaniline Electrodes Prepared by Chemical Synthesis and Electrodeposition: Revisited with High-Scan-Rate Behaviors

  • Nam, Ji Hyun;Woo, Cho Hyeon;Kim, Kwang Man;Ryu, Kwang Sun;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권2호
    • /
    • pp.80-84
    • /
    • 2012
  • The polyaniline (PANI) electrodes are prepared by chemical synthesis and electrodeposition methods and their supercapacitive properties are characterized and compared by morphology observation, cyclic voltammetry as a function of scan rate, and impedance spectra analysis. In particular, the supercapacitive properties obtained in the range of higher potential scan rates (e.g., over $200mV\;s^{-1}$) are emphasized to be capable of utilizing adequately the high power capability of supercapacitor. As a result, the PANI electrode by the electrodeposition shows superior specific capacitance (max. $474F\;g^{-1}$ at $10mV\;s^{-1}$ and about $390F\;g^{-1}$ at $500mV\;s^{-1}$) than those by the chemical synthesis method. This is mainly due to highly porous structure obtained by the electrodeposition to yield higher specific surface area.

The Influence of Carbonization Temperature and KOH Activation Ratio on the Microporosity of N-doped Activated Carbon Materials and Their Supercapacitive Behaviors

  • Son, Yeong-Rae;Heo, Young-Jung;Cho, Eun-A;Park, Soo-Jin
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.267-275
    • /
    • 2018
  • A facile method for the preparation of nitrogen-doped microporous carbon via the pyrolysis of poly(vinylidene fluoride) (PVDF) using polypyrrole (PPy) as a selective nitrogen source was developed. A PVDF/PPy-800 sample (carbonized at $800^{\circ}C$) with a 1:0.5 ratio of PVDF and PPy exhibited the highest micropore volume. The activated microporous carbon materials obtained from PVDF/PPy-800 prepared at $800^{\circ}C$ with KOH possessed a large specific surface area and narrow pore-size distribution. They were characterized using $N_2$ adsorption at 77 K and argon (Ar) adsorption at 87 K, which allowed for the characterization of the narrow microporosity of the prepared materials due to the absence of interactions between Ar and the sample surface. In addition, the activated microporous carbon material with a KOH/carbon ratio of 2:1 was found to exhibit the largest specific surface area ($1296m^2g^{-1}$ in $N_2$ at 77 K) and microporosity, and a high specific capacitance ($122.8F\;g^{-1}$).

포접화합물을 이용한 축냉시스템에 대한 이론적 해석 (Theoretical analysis on the cool storage system using clathrates)

  • 정재동;정인성;유호선;이준식
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF

부타디엔 고무로 결합된 탄소반죽 바이오센서를 이용한 과산화수소의 전기화학적 정량 (Electrochemical determination of hydrogen peroxide using carbon paste biosensor bound with butadiene rubber)

  • 윤길중
    • 분석과학
    • /
    • 제23권5호
    • /
    • pp.505-510
    • /
    • 2010
  • 톨루엔에 녹인 폴리부타디엔을 탄소가루의 결합재로 사용하였을 때, 탄소반죽은 전극 제작 후 용매 증발에 의하여 기계적 물성을 보였으며, 이 성질은 탄소반죽전극 실용화의 선행조건을 충족시키는 것이었다. 부타디엔 고무를 결합재로 사용하여 새로운 효소전극을 제작하고, 그것이 정량적인 전기화학적 행동을 보이는지 확인하기 위하여 여러 가지 전기화학 속도론적 파라메터 즉 대칭인자, 교환전류밀도, 이중층의 축전용량, 시간상수, 최대전류, Michaelis 상수 등을 구하였다. 이 결과들은 부타디엔 고무가 탄소반죽전극 실용화에 추천할 만한 위한 결합재임을 보여 주는 것이었다.