• Title/Summary/Keyword: cap truss

Search Result 3, Processing Time 0.014 seconds

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

Effect of Cap Truss on Optimal Outrigger Location in Tall Building (초고층건물에서 아웃리거 구조의 최적위치에 대한 캡 트러스가 미치는 영향)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.40-49
    • /
    • 2013
  • This study purposed to investigate the optimal outrigger location in tall building with cap truss after a structural schematic design of 80 stories building was performed by using MIDAS-Gen. In this paper, the main parameters of structural analysis were the outrigger location and stiffness of main structural elements (outrigger, exterior column, shear wall etc). In order to search the optimal outrigger position in high-rise building with cap truss, we analysed and examined the lateral displacement of top floor which is one of the very important considering factors of tall building structural design. The paper results indicated that the outrigger location and the stiffness of main structural elements such as outrigger, exterior column and shear wall had an effect on the optimal outrigger location. And it is verified that the study results provided the basic engineering data for fixing the most optimal outrigger location for minimizing the lateral displacement of tall building.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.