• 제목/요약/키워드: cantilevered beam

검색결과 102건 처리시간 0.019초

Co-rotational 비선형 정식화 및 FETI-local 기법을 결합한 비선형 대용량/다물체 구조 해석 알고리듬 개발 (Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method)

  • 조해성;주현식;이영헌;곽민철;신상준;여재익
    • 한국항공우주학회지
    • /
    • 제44권9호
    • /
    • pp.775-780
    • /
    • 2016
  • 본 논문에서는 비선형 다물체 동역학 해석에 적용 가능한 구조해석을 개발하였다. 비선형 구조 해석을 위해 Co-rotational 이론 기반의 유한요소를 개발하였다. 그리고 국부 Lagrange 승수를 활용한 영역분할해석 기법을 적용하여 대용량/다물체 해석이 가능한 구조해석 알고리듬을 개발하였다. 기 개발한 구조 해석은 외팔보 및 다물체 구조에 대한 비선형 정적 해석 예제에 적용하였다. 병렬 계산에 따른 성능 평가는 희박행렬 계산 라이브러리인 PARDISO와 비교하였다. 이를 통해 기 개발 구조해석의 계산 속도 향상을 확인하였다.

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.