항공레이저측량을 통한 지형 분류작업은 분류 정확도의 확보와 세밀한 지형 표현의 두 목표를 동시에 만족해야 한다. 이 두 목표를 달성하기 위한 자동분류 처리에 연구로서 노이즈가 많은 지형분류 결과로부터 필터링을 통한 품질향상 연구가 다수 있었으나 한국과 같이 삼림이 울창하고 지표면 투과율이 낮은 환경에서의 항공레이저측량 결과 적용 시 관목 및 교목 하층이 지면으로 분류되는 오류가 많았다. 이에 본 연구는 정확도가 높고 점밀도가 낮은 1차 지형분류 결과를 기반으로 아직 지형으로 등록되지 않은 LiDAR 지형 분류 후보 점군들로부터 세밀 지형 표현에 필요한 점들을 추출하는 기법으로 점분류 처리절차를 개선하였다. 주변 지형 포인트의 가중치를 부여하여 경사 (gradient) 계산을 통해 미추출 LiDAR 점군들로부터 지형 표현 점들을 분류하는 본 알고리즘은 특히 능선부분의 사라진 특징을 찾아내거나 무너진 논둑을 복원하는 등 최소의 점들로 중요한 지형 요소점(terrain model key points)을 놓치지 않고 세밀하게 표현하는데 효과적이다. 이 알고리즘을 통해 추출한 점들과 1차 지형분류 결과를 결합하여 지형분류최적화 방법을 제안하였다.
본 연구에서는 울릉도 태하령의 섬잣나무-솔송나무림에서 10개의 영구방형구($10m{\times}10m$) 및 30개의 소방 형구($1m{\times}3m$)를 설치하여 임분구조, 식생조성 및 종다양성을 밝히며 종다양성 모형을 수립하였다. 섬잣나무-솔송나무 임분의 광량은 평균 $3.7mol{\cdot}m^{-2}{\cdot}day^{-1}$, 수관 열림도는 평균 8.6 %로 분석되었다. Mantel 검정 결과, 임분 상층의 구조가 장기적으로 지속되기 어려울 것으로 나타났다. 하층식생의 조성은 지상부의 구조 및 토양 나출도와 유의한 상관을 나타내었다. 중회귀분석을 통한 종다양성 모형에서 섬잣나무의 양적 요인(단면적 및 밀도) 및 숲 바닥 조건이 유의한 예측변수로 분석되었다. 섬잣나무-솔송나무림의 유지에는 비교적 큰 규모의 교란이 필요할 것으로 생각되며, 종다양성을 유지하기 위해서는 여우꼬리사초 및 큰두루미꽃과 같은 단일 군반을 형성하는 교란지 종의 확장을 제어하는 것이 필요하다.
공간해상도가 높은 드론 영상은 수목 밀도가 높은 지역에서 추출 한계를 갖는 기존 연구의 대안으로 떠오르고 있다. 본 연구에서는 드론 영상으로부터 수목이 우거진 산림 지역 내 수목 개체를 추출하였다. 영상 분할 과정을 거쳐서 추출되는 수목 개체 인식을 위해, DSM(digital surface model), 그리고 R, G, B 밴드 모두를 조합한 경우와 각각을 분리 조합한 경우의 영상 분할 결과를 비교하였다. 또한, 낙엽수림의 수목 우거짐의 변화를 시기별 영상별로 실험하였다. 3, 4, 5월 영상 중 숲이 울창한 5월의 경우 현지 측량한 나무를 기준으로 한 수목 개체 추출율은 50%로 나타났고, 수관폭 정확도 분석 결과 RMSE(root mean square error)가 1.5미터 이하로 가장 좋은 결과를 보였다. 실험지역의 추출은 중간 나무, 작은 나무 2가지 크기로 추출하였으며 작은 크기의 나무가 추출 정확도가 더 높았다. 이를 바탕으로 수고 추출을 하고, 수관폭과 흉고직경간의 관계식을 이용하여 흉고직경을 추정한다면, 임목재적 추정 및 산림바이오매스 추정까지 가능할 것으로 보인다.
Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.
본 논문에서는 손실판(resistive sheet) 방식을 사용하여 풀잎이나 나뭇잎의 후방 산란 레이더 단면적(RCS: Radar Cross Section)을 계산하고, 이 모델의 정확성을 검증하여, 손실판 모델을 적용하여 계산 가능한 잎의 두께를 제시한다. 이를 위해 잎을 손실 있는 유전체 판으로 가정하고, 이 유전체 판을 resistive sheet(손실판)으로 대체한 후에 판의 두께, 유전율, 주파수에 따른 resistivity를 계산한 후에, PO(Physical Optics) 방식을 이용하여 다양한 크기와 두께 조건에서 RCS를 계산하였고, 이 계산 결과를 상용 시뮬레이터를 사용한 FEM(Finite Element Method) 방식의 수치해석 계산 결과와 비교하였다. 이 비교 결과에 의하면 유전체 판의 두께가 커질수록 오차가 증가하였으며, 예를 들어, 주파수 9.6 GHz에서 유전율이 21.4+9.7i이고, 잎 두께가 1.2 mm일 때 0.1 dB의 오차가 발생하였고, 3 mm일 때 3.74 dB의 오차가 발생하였다. 또한, 유전율이 높아질수록 이 모델 사용 가능한 최대 두께가 증가하는 경향을 보였다. 이 연구는 원격탐사 연구에서 수많은 잎이 분포되어 있을 때에 그 잎들의 산란 특성을 산란모델을 이용하여 계산하는 데에 유용하게 사용될 것이다.
Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, the two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if prescribed N for site-specific fertilizer management at panicle initiation stage (VRT) could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, ,33 kg N/ha at PIS) method. The trial field was subdivided into two parts and each part was subjected to UN and VRT treatment. Each part was schematically divided in $10\times10m$ grids for growth and yield measurement or VRT treatment. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for this calculation were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with average of 57kg/ha that was higher than 33kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%\;and\;7.1\%$ in VRT from $14.6\%\;and\;13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. Although N use efficiency of VRT compared to UN was not quantified due to lack of no N control treatment, the procedure used in this paper for VRT estimation was believed to be reliable and promising method for managing within-field spatial variability of yield and protein content. The method should be received further study before it could be practically used for site-specific crop management in large-scale rice field.
산림의 보존과 관리에 대한 필요성이 점차 증가하면서 항공 라이다데이터를 이용한 산림연구가 활발히 수행되고 있다. 이러한 산림연구에서 수목고도는 정량적인 산림측정을 위한 중요한 변수로 이용된다. 이에 본 연구는 항공 라이다데이터로부터 수목고도 추정을 위한 대표적인 두 종류의 방법을 적용하고 그 결과를 비교분석한다. Local maximum 필터링에 기반한 개별수목탐지 방법으로 개별수목의 수, 위치, 높이 및 평균수고를, 수목고도모델 또는 히스토그램을 이용한 평균수고 추정방법으로 개별격자 또는 전체영역에 대한 최대, 평균수고, 평균 수관고를 추정한다. 현장에서 실측한 검증데이터와 비교한 결과 개별 수목은 76.6%의 정확도로 탐지되었으며 개별수고는 전체 수종의 경우 1.91m, 침엽수종에 대해서는 0.75m의 RMSE로 추정되었다. 반면 수목고도모델을 이용하여 추정된 평균수고는 약 1~2m의 RMSE를 보였으며, 히스토그램을 이용하여 추정된 평균수고는 약 0.6m 과소 추정되었다. 정확하고 다양한 산림정보 추출을 위해 수종 및 추정인자에 따라 적합한 상호보완적인 방법을 선택하고 융합하는 것이 필요하다.
노거수는 높은 가치를 지니고 있는 재생불능자원이므로 과학적이고 합리적인 가치 평가는 노거수의 보존관리에 있어 매우 중요하다. 그러나 현재 노거수의 가치 평가에 관한 연구와 권위 있는 평가 지표는 매우 부족한 실정이다. 본 연구는 노거수의 특수성을 감안한 가치 요인을 분석하여 합리적인 평가 지표를 선정하고 현실 적용 가능한 가치 평가 모형을 구축하는데 목적이 있다. 노거수의 평가 지표는 경제가치, 과학연구가치, 생태가치, 경관가치, 사회공익가치로 구분된다. 노거수의 가치에 대한 중요 인자는 인문역사, 성장장소, 수목상태, 수형, 수세, 수종, 수관, 보호등급, 성장환경 등 이다. 계층분석법(AHP)을 이용하여 가치 평가 산식을 작성하고 경주의 세계문화유산인 계림숲 내에 위치한 느티나무의 가치 평가를 실시하였다. 느티나무의 가치는 평가결과 491,503,300원으로 추정된다. 연구 결과는 노거수의 가치 감정과 손실 보상에 중요한 자료가 되며 노거수에 대한 보호 의식을 향상시킬 수 있다.
경사지 밭 토양에서 강우에 의해 소실된 토양의 소유역내 유입형태를 파악하기 위해, 강우에 따른 토양유실 양상을 파악하고 강우 사상별로 물 유출과 토양유실량을 관측하고 분석하였다. 2개년의 작물재배기간 중 토양 유실이 발생했을 때의 강우특성은 연평균강우량 (879.6 mm)의 80%정도가 7, 8월에 집중되었으며, 81.1인 연평균 강우인자 $EI_{30}$도 7, 8월에 제일 큰 값 65.3을 보였다. 유출량은 강우양상과 옥수수 파종시기 등의 차이에 따라 전체 유출량은 2002년이, 최대유출량은 2003년이 많은 양상으로, 토양유실은 유출량이 최대인 2003년이 $49.3kg\;ha^{-1}$가 많았다. 유출율은 평균적으로 지면 피복이 많지 않은 작물생육 초기에는 높았다가 작물생육 중 후기로 진행되어 가면서 감소하는 경향이었다. 강우사상별 물 유출에 따른 토양 유실량은 물 유출량이 많아질수록 토양 유실량도 증가하는 경향으로 직선 관계를 나타냈고, 토양유실이 발생할 수 있는 최소조건을 고려했을 때 강우사상별 토양 유실이 발생할 수 있는 최소 물 유출량은 약 $2.3Mg\;ha^{-1}$이고 토양 유실에 대한 토양의 임계저항은 0.51 Pa이었다. 이상의 결과를 종합하면, 옥수수를 재배하는 경사가 17%인 밭에서 강우에 의한 물 유출량이 $2.3Mg\;ha^{-1}$이면 토양이 받는 압력은 0.51 Pa 정도로 이 수치 이상일 때는 수계로 유입되는 토양 유실이 발생한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.