Communications for Statistical Applications and Methods
/
제26권3호
/
pp.305-313
/
2019
Generalized canonical correlation analysis (GCCA) extends the canonical correlation analysis (CCA) to the case of more than two sets of variables and there have been many studies on how two-set canonical solutions can be generalized. In this paper, we derive certain stationary equations which can lead the higher-order solutions of several GCCA methods and suggest a type of iterative procedure to obtain the canonical coefficients. In addition, with some numerical examples we present the methods for graphical display, which are useful to interpret the GCCA results obtained.
Simple canonical correlation biplot is a graphical method to investigate two sets of variables and observations in simple canonical correlation analysis. If we consider the set of covariate variables that linearly affects two sets of variables, we can apply the partial canonical correlation biplot in partial canonical correlation analysis that removes the linear effect of the set of covariate variables on two sets of variables. On the other hand, we consider the set of covariate variables that linearly affect one set of variables but not the other. In this case, if we apply the simple or partial canonical correlation biplot, we cannot clearly interpret other two sets of variables. Therefore, in this study, we will apply the semi-partial canonical correlation analysis of Timm (2002) and remove the linear effect of the set of covariate variables on one set of variables but not the other. And we suggest the semi-partial canonical correlation biplot for interpreting the semi-partial canonical correlation analysis. In addition, we will compare shapes and shape the variabilities of the simple, partial and semi-partial canonical correlation biplots using a procrustes analysis.
The simplification and the searching trends of complex data which assumed relationship between predictor variables and object variables are one of primary objective of ecological research. This study was aimed to apply cononical analysis consisting of canonical correlation analysis and canonical variate analysis related to lichen vegetation and several environmental variables which are elevation, height on grond, exposure side and cover values. Data collected from the Duckyoo National Park in August 1985. Lichen species was ranked by eqivocation information theory with cover values. Canonical correlation analysis was applied to one data set both set both environmental variables and lichem family. In order to make two sets of data matrix the scale of position vector ordination was calculated from the vector scalar product for lichen species. Canonical variate analysis was applied to rearranged data which was made by interval class code for environmental variables. The sharpness values was calculated in frequency of cotingency tables and the dispersion profiles of each species in classes of environmental variables was designed to extract component values based on the decomposition of expected frequencies in contingency table. The results of canonical correlation analysis revealed canonical first correlation value 0.815(89%), and second correlation value 0.083(11%). Significance test showed that the hypothesis of joint mutuallity of canonical correlation is accepted (P>0.05). The relation between canonical score of vegetation variables and that of environmental variable indicated linear tendency.
Communications for Statistical Applications and Methods
/
제19권3호
/
pp.471-478
/
2012
In this paper, we present a permutation test to select the number of pairs of canonical variates in canonical correlation analysis. The existing chi-squared test is known to be limited to normality in use. We compare the existing test with the proposed permutation test and study their asymptotic behaviors through numerical studies. In addition, we connect canonical correlation analysis to regression and we we show that certain inferences in regression can be done through canonical correlation analysis. A regression analysis of real data through canonical correlation analysis is illustrated.
행렬도는 이원표 자료행렬의 행과 열을 탐색하기에 유용한 그래프적 방법이다. 특히, 정준상관 행렬도는 정준상관분석의 결과를 이용하여 두 변수군과 개체간의 관계를 기하적으로 살펴볼 수 있다. 그 반면에 자료의 성격에 따라 세개 이상의 변수군이 존재하는 경우에는 정준상관분석의 개념에서 확장한 일반화 정준상관분석을 이용하여 일반화 정준상관 행렬도를 고려할 수 있다. 그러나 자료의 성격에 따라 두 변수군 외에 이들 두 변수군에 선형적 영향을 미치는 공변량변수로 이루어진 다른 한 변수군이 존재하는 경우에, 일반화 정준상관 행렬도를 적용한다면 공변량변수군의 영향력 때문에 주 관심인 두 변수군에 대하여 잘못 해석할 수 있다. 따라서 본 연구에서는 Rao (1969)의 공변량 변수군의 영향력을 제거한 편정준상관분석을 살펴보고, 이를 기하적으로 해석하기 위한 편정준상관 행렬도를 제안한다.
Journal of the Korean Data and Information Science Society
/
제15권3호
/
pp.515-521
/
2004
Categorical data are mostly found in oriental medical research. The nonlinear canonical correlation analysis does not assume an interval level of measurement. In this paper, we apply nonlinear canonical correlation analysis to quantification and explain how similar sets of variables are to one another for paralysis disease data.
본 연구에서는 가중주성분분석으로부터 정준대응분석을 유도하는 Legendre와 Legendre (2012)의 알고리즘을 고찰하였다. 그리고, 가중주성분분석에 기반한 Legendre와 Legendre (2012)의 정준대응분석이 가우시안 반응모형에 기초한 Ter Braak (1986)의 정준대응분석과 동일함을 다루었다. 생태학에서 종의 발현 정도를 잘 설명할 수 있는 가우시안 반응곡선에서 도출된 Ter Braak (1986)의 정준대응분석은 종 패킹 모형(species packing model)이라는 기본 가정을 사용한 후 일반화선형모형과 정준상관분석을 결합시키는 방법으로 도출된다. 그런데 Legendre와 Legendre (2012)의 알고리즘은 이러한 가정없이 Benzecri의 대응분석과 상당히 유사한 방법으로 계산되는 특징을 지닌다. 그러므로 가중주성분석에 기초한 정준대응분석을 사용하면, 결과물 활용에 약간의 유연성을 지닐 수 있게 된다. 결론적으로 본 연구에서는 서로 다른 모형에서 출발한 두 방법이 장소점수(site score), 종 점수(species score) 그리고 환경변수와의 상관관계가 서로 동일함을 보인다.
This research is an attempt to obtain more accurate land cover information from LANDSAT images. Canonical correlation analysis, which has not been widely used in the image classification community, was applied to the classification of a LANDSAT images. It was found that it is easy to select training areas on the classification using canonical correlation analysis in comparison with the maximum likelihood classifier of $ERDAS^{(R)}$ software. In other words, the selected positions of training areas hardly affect the classification results using canonical correlation analysis. when the same training areas are used, the mapping accuracy of the canonical correlation classification results compared with the ground truth data is not lower than that of the maximum likelihood classifier. The kappa analysis for the canonical correlation classifier and the maximum likelihood classifier showed that the two methods are alike in classification accuracy. However, the canonical correlation classifier has better points than the maximum likelihood classifier in classification characteristics. Therefore, the classification using canonical correlation analysis applied in this research is effective for the extraction of land cover information from LANDSAT images and will be able to be put to practical use.
다변량 금융시계열의 변동성분석을 다변량 기법인 정준상관분석(canonocal correaltion analysis)을 이용해 분석하였다. 변동성의 특성상 계수들이 비음(non-negative)인 정준상관분석, 즉, non-negative and sparse canonical correlation analysis (NSCCA)를 이용해 보았다. 본 논문은 다변량 시계열의 변동성 커브에 대해 연구하고 있으며 제시된 방법론을 이변량 주식자료분석을 통해 예시해 보았다.
Communications for Statistical Applications and Methods
/
제17권6호
/
pp.917-925
/
2010
일반적으로 정준상관 행렬도(canonical correlation biplot)는 정준상관분석에서 두 변수집단에 의해서 측정된 다변량 자료에서 변수 집단 간의 관계와 개체들의 관계를 탐색하기 위한 2차원 그림이다. 최근에 이를 활용하여 최태훈과 최용석 (2008)은 2006년도 한국여자골프협회(KLPGA) 선수에 대한 기술요인 변수군과 경기성적요인 변수군간의 관련성을 살펴보았고 최태훈 등 (2009)은 테니스 그랜드 슬램대회 선수특성요인과 경기요인에 대한 분석을 하였다. 더군다나 세 변수군 이상의 정준상관분석을 일반화 정준상관분석(generalized canonical correlation analysis)이라 하며 이와 관련하여 허명회 (1999, 6장)는 수량화 플롯을 제안하고있다. 이를 행렬도의 의미에서 일반화 정준상관 행렬도(generalized canonical correlation biplot)라하자. 본 연구에서는 대한 테니스협회(KTA)에 등록된 남자선수들 중 상위50명의 체격요인, 체력요인 및 기초기술요인에 대한 분석을 일반화 정준상관 행렬도를 적용하여 살펴보고 프로크러스티즈 분석을 통하여 전체선수, 상위랭킹과 하위랭킹 선수간의 행렬도 형상비교를 시도 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.