• Title/Summary/Keyword: canonical analysis

Search Result 454, Processing Time 0.027 seconds

Higher-order solutions for generalized canonical correlation analysis

  • Kang, Hyuncheol
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.305-313
    • /
    • 2019
  • Generalized canonical correlation analysis (GCCA) extends the canonical correlation analysis (CCA) to the case of more than two sets of variables and there have been many studies on how two-set canonical solutions can be generalized. In this paper, we derive certain stationary equations which can lead the higher-order solutions of several GCCA methods and suggest a type of iterative procedure to obtain the canonical coefficients. In addition, with some numerical examples we present the methods for graphical display, which are useful to interpret the GCCA results obtained.

Semi-Partial Canonical Correlation Biplot

  • Lee, Bo-Hui;Choi, Yong-Seok;Shin, Sang-Min
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.521-529
    • /
    • 2012
  • Simple canonical correlation biplot is a graphical method to investigate two sets of variables and observations in simple canonical correlation analysis. If we consider the set of covariate variables that linearly affects two sets of variables, we can apply the partial canonical correlation biplot in partial canonical correlation analysis that removes the linear effect of the set of covariate variables on two sets of variables. On the other hand, we consider the set of covariate variables that linearly affect one set of variables but not the other. In this case, if we apply the simple or partial canonical correlation biplot, we cannot clearly interpret other two sets of variables. Therefore, in this study, we will apply the semi-partial canonical correlation analysis of Timm (2002) and remove the linear effect of the set of covariate variables on one set of variables but not the other. And we suggest the semi-partial canonical correlation biplot for interpreting the semi-partial canonical correlation analysis. In addition, we will compare shapes and shape the variabilities of the simple, partial and semi-partial canonical correlation biplots using a procrustes analysis.

An Application of Canonical Analysis on the Distribution of Lichens in Mt. Duckyuoo (덕유산 지의식물 분포에 대한 정준분석법의 적용연구)

  • Park, Seung Tai
    • The Korean Journal of Ecology
    • /
    • v.9 no.3
    • /
    • pp.135-147
    • /
    • 1986
  • The simplification and the searching trends of complex data which assumed relationship between predictor variables and object variables are one of primary objective of ecological research. This study was aimed to apply cononical analysis consisting of canonical correlation analysis and canonical variate analysis related to lichen vegetation and several environmental variables which are elevation, height on grond, exposure side and cover values. Data collected from the Duckyoo National Park in August 1985. Lichen species was ranked by eqivocation information theory with cover values. Canonical correlation analysis was applied to one data set both set both environmental variables and lichem family. In order to make two sets of data matrix the scale of position vector ordination was calculated from the vector scalar product for lichen species. Canonical variate analysis was applied to rearranged data which was made by interval class code for environmental variables. The sharpness values was calculated in frequency of cotingency tables and the dispersion profiles of each species in classes of environmental variables was designed to extract component values based on the decomposition of expected frequencies in contingency table. The results of canonical correlation analysis revealed canonical first correlation value 0.815(89%), and second correlation value 0.083(11%). Significance test showed that the hypothesis of joint mutuallity of canonical correlation is accepted (P>0.05). The relation between canonical score of vegetation variables and that of environmental variable indicated linear tendency.

  • PDF

Canonical Correlation: Permutation Tests and Regression

  • Yoo, Jae-Keun;Kim, Hee-Youn;Um, Hye-Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • In this paper, we present a permutation test to select the number of pairs of canonical variates in canonical correlation analysis. The existing chi-squared test is known to be limited to normality in use. We compare the existing test with the proposed permutation test and study their asymptotic behaviors through numerical studies. In addition, we connect canonical correlation analysis to regression and we we show that certain inferences in regression can be done through canonical correlation analysis. A regression analysis of real data through canonical correlation analysis is illustrated.

Partial Canonical Correlation Biplot (편정준상관 행렬도)

  • Yeom, Ah-Rim;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.559-566
    • /
    • 2011
  • Biplot is a useful graphical method to explore simultaneously rows and columns of two-way data matrix. In particular, canonical correlation biplot is a method for investigating two sets of variables and observations in canonical correlation analysis graphically. For more than three sets of variables, we can apply the generalized canonical correlation biplot in generalized canonical correlation analysis which is an expansion of the canonical correlation analysis. On the other hand, we consider the set of covariate variables which is affecting the linearly two sets of variables. In this case, if we apply the generalized canonical correlation biplot, we cannot clearly interpret the other two sets of variables due to the effect of the set of covariate variables. Therefor, in this paper, we will apply the partial canonical correlation analysis of Rao (1969) removing the linear effect of the set of covariate variables on two sets of variables. We will suggest the partial canonical correlation biplot for inpreting the partial canonical correlation analysis graphically.

Nonlinear Canonical Correlation Analysis for Paralysis Disease Data

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.515-521
    • /
    • 2004
  • Categorical data are mostly found in oriental medical research. The nonlinear canonical correlation analysis does not assume an interval level of measurement. In this paper, we apply nonlinear canonical correlation analysis to quantification and explain how similar sets of variables are to one another for paralysis disease data.

  • PDF

Equivalence study of canonical correspondence analysis by weighted principal component analysis and canonical correspondence analysis by Gaussian response model (가중주성분분석을 활용한 정준대응분석과 가우시안 반응 모형에 의한 정준대응분석의 동일성 연구)

  • Jeong, Hyeong Chul
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.945-956
    • /
    • 2021
  • In this study, we considered the algorithm of Legendre and Legendre (2012), which derives canonical correspondence analysis from weighted principal component analysis. And, it was proved that the canonical correspondence analysis based on the weighted principal component analysis is exactly the same as Ter Braak's (1986) canonical correspondence analysis based on the Gaussian response model. Ter Braak (1986)'s canonical correspondence analysis derived from a Gaussian response curve that can explain the abundance of species in ecology well uses the basic assumption of the species packing model and then conducts generalized linear model and canonical correlation analysis. It is derived by way of binding. However, the algorithm of Legendre and Legendre (2012) is calculated in a method quite similar to Benzecri's correspondence analysis without such assumptions. Therefore, if canonical correspondence analysis based on weighted principal component analysis is used, it is possible to have some flexibility in using the results. In conclusion, this study shows that the two methods starting from different models have the same site scores, species scores, and species-environment correlations.

An Application of Canonical Correlation Analysis Technique to Land Cover Classification of LANDSAT Images

  • Lee, Jong-Hun;Park, Min-Ho;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.41-51
    • /
    • 1999
  • This research is an attempt to obtain more accurate land cover information from LANDSAT images. Canonical correlation analysis, which has not been widely used in the image classification community, was applied to the classification of a LANDSAT images. It was found that it is easy to select training areas on the classification using canonical correlation analysis in comparison with the maximum likelihood classifier of $ERDAS^{(R)}$ software. In other words, the selected positions of training areas hardly affect the classification results using canonical correlation analysis. when the same training areas are used, the mapping accuracy of the canonical correlation classification results compared with the ground truth data is not lower than that of the maximum likelihood classifier. The kappa analysis for the canonical correlation classifier and the maximum likelihood classifier showed that the two methods are alike in classification accuracy. However, the canonical correlation classifier has better points than the maximum likelihood classifier in classification characteristics. Therefore, the classification using canonical correlation analysis applied in this research is effective for the extraction of land cover information from LANDSAT images and will be able to be put to practical use.

  • PDF

Multivariate Volatility Analysis via Canonical Correlations for Financial Time Series (정준상관분석을 통한 다변량 금융시계열의 변동성 분석)

  • Lee, Seung Yeon;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1139-1149
    • /
    • 2014
  • Multivariate volatility is summarized through canonical correlation analysis (CCA). Along with the standard CCA, non-negative and sparse canonical correlation analysis (NSCCA) is introduced to make sure that volatility coefficients are non-negative and the number of coefficients in the volatility CCA is as small as possible. Various multivariate financial time series are analyzed to illustrate the main contribution of the paper.

A Study on the Relationship between Physique, Physical Fitness and Basic Skill Factors of Tennis Players in the Korea Tennis Association Using the Generalized Canonical Correlation Biplot and Procrustes Analysis (일반화 정준상관 행렬도와 프로크러스티즈 분석을 응용한 대한테니스협회 등록 선수의 체격요인, 체력요인 및 기초기술요인에 대한 분석연구)

  • Choi, Tae-Hoon;Choi, Yong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.917-925
    • /
    • 2010
  • The canonical correlation biplot is a 2-dimensional plot for graphically investigating the relationship between two sets of variables and the relationship between observations and variables in the canonical correlation analysis. Recently, Choi and Choi (2008) suggested a method for investigating the relationship between skill and competition score factors of KLPGA players using this biplot. Choi et al. (2010) used this biplot to analyze the player characteristic factors and competitive factors of tennis Grand Slam competition. Moreover, Huh (1999) provided a generalized canonical correlation analysis and biplot for more than three sets of variables. A Procrustes analysis is a useful tool for comparing shapes between configurations. This study will provide a method to investigate the relationship between physique, physical fitness and basic skill factors of tennis players in the Korea Tennis Association using a generalized canonical correlation biplot and Procrustes analysis.