• Title/Summary/Keyword: candidate materials

Search Result 803, Processing Time 0.025 seconds

Introduction on the Products and the Quality Management Plans for GOCI-II (천리안 해양위성 2호 산출물 및 품질관리 계획)

  • Lee, Sun-Ju;Lee, Kyeong-Sang;Han, Tae Hyun;Moon, Jeong-Eon;Bae, Sujung;Choi, Jong-kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1245-1257
    • /
    • 2021
  • GOCI-II, succeeding the mission of GOCI, was launched in February 2020 and has been in regular operation since October 2020. Korea Institute of Ocean Science and Technology (KIOST) processes and produces in real time Level-1B and 26 Level-2 outputs, which then are provided by Korea Hydrographic and Oceanographic Agency (KHOA). We introduced current status of regular GOCI-II operation and showed future improvement. Basic GOCI-II products including chlorophyll-a, total suspended materials, and colored dissolved organic matter concentration, are induced by OC4 and YOC algorithms, which were described in detail. For the full disk (FD), imaging schedule was established considering solar zenith angle and sun glint during the in-orbital test, but improved by further considering satellite zenith angle. The number of slots satisfying the condition 'Best Ocean' significantly increased from 15 to 78. GOCI-II calibration requirements were presented based on that by European Space Agency (ESA) and candidate fixed locations for calibrating local observation area were. The quality management of FD uses research ships and overseas bases of KIOST, but it is necessary to establish an international calibration/validation network. These results are expected to enhance the understanding of users for output processing and help establish detailed plans for future quality management tasks.

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing (큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석)

  • Ho Yong Shin;Chang Yoon Ji;Ho Soo Kim;Jung-Sung Chung;Sung Hwan Choi;Sang-Soo Kwak;Yun-Hee Kim;Jeung Joo Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.1-10
    • /
    • 2023
  • Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.

Radiotherapy in Medically Inoperable Early Stage Non-small Cell Lung Cancer (내과적 문제로 수술이 불가능한 조기 비소세포성 폐암에서의 방사선치료)

  • Kim, Bo-Kyoung;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.257-264
    • /
    • 2000
  • Purpose: For early stage non-small-cell lung cancer, surgical resection is the treatment of choice. But when the patients are not able to tolerate it because of medical problem and when refuse surgery, radiation therapy is considered an acceptable alternative. We report on the treatment results and the effect of achieving local control of primary tumors on survival end points, and analyze factors that may influence survival and local control. Materials and Method : We reviewed the medical records of 32 patients with medically inoperable non-small cell lung cancer treated at our institution from June, 1987 through June, 1997. All patients had a pathologic diagnosis of non-small cell lung cancer and were not candidate for surgical resection because of either patients refusal (4), old age (2), lung problem (21), chest wail invasion (3) and heart problems (3). In 8 patients, there were more than 2 problems. The median age of the patients was 68 years (ranging from 60 to 86 years). Histologic cell type included souamous (24), adenocarcinoma (6) and unclassiried squamous cell (2). The clinical stages of the patients were 71 in 5, 72 in 25, 73 in 2 patients. Initial tumor size was 3.0 cm in 11, between 3.0 cm and 5.0 cm in 13 and more than 5.0 cm in 8 patients. Ail patients had taken chest x-rays, chest CT, abdomen USG and bone scan. Radiotherapy was delivered using 6 MV or 10 MV linear accelerators. The doses of primary tumor were the ranging from 54.0 Gy to 68.8 Gy (median; 61.2 Gy). The duration of treatment was from 37 days through 64 days (median; 0.5 days) and there was no treatment interruption except 1 patient due to poor general status. In 12 patients, concomitant boost technique was used. There were no neoadjuvant or adjuvant treatments such as surgery or chemotherapy. The period of follow-up was ranging from 2 months through 93 months (median; 23 months). Survival was measured from the date radiation therapy was initiated. Results : The overall survival rate was 44.6$\%$ at 2 years and 24.5$\%$ at 5 years, with the median survival time of 23 months. of the 25 deaths, 7 patients died of intercurrent illness, and cause-specific survival rate was 61.0$\%$ at 2 years and 33.5$\%$ at 5 years. The disease-free survival rate was 38.9$\%$ at 2 years and 28.3$\%$ at 5 years. The local-relapse-free survival rate was 35.1$\%$, 28.1$\%$, respectively. On univariate analysis, tumor size was significant variable of overall survival (p=0.0015, 95$\%$ C.1.; 1.4814-5.2815), disease-free survival (P=0.0022, 95$\%$ C.1., 1.4707-5.7780) and local-relapse-free survival (p=0.0015, 95$\%$ C.1., 1.2910- 4.1197). 7 stage was significant variable of overall survival (p=0.0395, 95$\%$ C.1.; 1.1084-55.9112) and had borderline significance on disease-free survival (p=0.0649, 95$\%$ C.1.; 0.8888-50.7123) and local-relapse-free survival (p=0.0582, 95$\%$ C,1.; 0.9342-52.7755). On multivariate analysis, tumor size had borderline significance on overall survival (p=0.6919, 955 C.1., 0.9610-5.1277) and local-relapse-free survival ( p=0.0585, 95$\%$ C.1.; 0.9720-4.9657). Tumor size was also significant variable of disease-free survival (p=0.0317, 95% C.1.; 1.1028-8.4968). Conclusion : Radical radiotherapy is an effective treatment for small (71 or f3 cm) tumors and can be offered as alternative to surgery in elderly or infirmed patients. But when the size of tumor is larger than 5 cm, there were few long-term survivors treated with radiotherapy alone. The use of hypefractionated radiotherapy, endobronchial boost, radisensitizer and conformal or IMRT should be consider to improve the local control rate and disease-specific survival rate.

  • PDF