• Title/Summary/Keyword: candidate materials

Search Result 803, Processing Time 0.027 seconds

Discovery of a Yellow Light Emitting Novel Phosphor in Sr-Al-Si-O-N System Using PSO (PSO를 이용하여 탐색한 황색 발광을 하는 Sr-Al-Si-O-N 계 신규 LED용 형광체)

  • Park, Woon Bae
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.301-306
    • /
    • 2017
  • The discovery of new luminescent materials for use in light-emitting diodes(LEDs) has been of great interest, since LED-based solid state lighting applications are attracting a lot of attention in the energy saving and environmental fields. Recent research trends have centered on the discovery of new luminescent materials rather than on fine changes in well-known luminescent materials. In a sense, the novelty of our study beyond simple modification or improvement of existing phosphors. A good strategy for the discovery of new fluorescent materials is to introduce activators that are appropriate for conventional inorganic compounds, that have well-defined structures in the crystal structure database, but have not been considered as phosphor hosts. Another strategy is to discover new host compounds with structures that cannot be found in any existing databases. We have pursued these two strategies at the same time using composite search technology with particle swarm optimization(PSO). In this study, using PSO, we have tracked down a search space composed of Sr-Al-Si-O-N and have discovered a new phosphor structure with yellow luminescence; this material is a potential candidate for UV-LED applications.

A Study on the Wear Behavior of the Cu-TiB2 Composites (Cu-TiB2 복합재료의 마모거동에 관한 연구)

  • Kim Jung-Nam;Choi Jong-Un;Kang Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.61-65
    • /
    • 2005
  • The titanium $diboride(TiB_2)$ has high strength(750MPa), high melting point $(3225^{\circ}C)\;and\;10\%$ IACS electrical conductivity. On this account, the dispersion hardening $Cu-TiB_2$ composites(MMCs) are a promising candidate for applications as electrical contact materials. MMCs for electrical contact materials can reduce material cost and resource consumption caused by wear, due to its good mechanical and electrical property. In this study, we attempt to prepare MMCs with various volume fraction and particle size of $TiB_2$ by means of hot extruded and cold drawn process. Dry sliding wear tests were performed on a pin-on-disk type wear tester, sliding against SM45C under the different applied loads. After wear testing, the microstructures of the worn surfaces were observed by SEM and the microhardnesses of the subsurface zone were measured.

Nanocomposites for microelectronic packaging

  • Lee, Sang-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.99.1-99.1
    • /
    • 2016
  • The materials for an electronic packaging provide diverse important functions including electrical contact to transfer signals from devices, isolation to protect from the environment and a path for heat conduction away from the devices. The packaging materials composed of metals, ceramics, polymers or combinations are crucial to the device operating properly and reliably. The demand of effective charge and heat transfer continuous to be challenge for the high-speed and high-power devices. Nanomaterials including graphene, carbon nanotube and boron nitride, have been designed for the purpose of exploiting the high thermal, electrical and mechanical properties by combining in the matrix of metal or polymer. In addition, considering the inherent electrical and surface properties of graphene, it is expected that graphene would be a good candidate for the surface layer of a template in the electroforming process. In this talk, I will present recent our on-going works in nanomaterials for microelectronic packaging: 1) porous graphene/Cu for heat dissipations, 2) carbon-metal composites for interconnects and 3) nanomaterials-epoxy composites as a thermal interface materials for electronic packaging.

  • PDF

Effect of $Mg^{2+}$ co-doping on luminescent properties of $ZnGa_2O_4:Mn^{2+}$

  • Singh, Binod Kumar;Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.29-32
    • /
    • 2007
  • Zinc gallate, $ZnGa_2O_4:Mn^{2+}$ co-doped with different concentrations of $Mg^{2+}$ (0.001- 0.5 mol%) was prepared by solid state synthesis method. These compositions were investigated for their photoluminescence and cathodoluminescence properties. The optimized composition $Zn_{0.990}Mg_{0.005}Ga_2O_4:Mn_{0.005}$ shows higher luminescence intensity compared to the parent phosphor. The intense green emission peak was found at 504 nm. The $Mg^{2+}$ doping does not affect much the decay time. It remains <10 ms for these compositions which make them potential candidate for application in TV screens.

  • PDF

Peripheral Nerve Regeneration by Asymmetrically Porous PLGA/Pluronic F127 Nerve Guide Conduit

  • Oh, Se-Heang;Kim, Jun-Ho;Song, Kyu-Sang;Jeon, Byeong-Hwa;Lee, Il-Woo;Lee, Jin-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.181-181
    • /
    • 2006
  • We developed a novel method to fabricate a nerve guide conduit (NGC) with the porosity of submicron pore sizes (to prevent fibrous tissue infiltration) and hydrophilicity (for effective oxygen and nutrient permeation) using poly(lactic-co-glycolic acid) (PLGA) and Pluronic F127 by a modified immersion precipitation method designed by our laboratory. It was recognized that the hydrophilized PLGA/F127 (3 wt%) tube can be a good candidate as a NGC from the analyses of its morphology, mechanical strength, hydrophilicity, model nutrient permeability and in vivo nerve regeneration behavior using a rat model.

  • PDF

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

Characterization of HA/PCL composite scaffolds fabricated by layer manufacturing technology

  • Kim, Seung-Eon;Hyun, Yong-Taek;Yun, Hui-Suk;Yoon, Taek-Rim;Heo, Su-Jin;Shin, Jung-Woog
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1409-1410
    • /
    • 2008
  • Layer manufacturing technology has been recently spotlighted as a promising candidate to fabricate porous scaffolds for tissue engineering, because it can provide three dimensional interconnectivity and different pore structures and on-demand scaffold design. This study aims to fabricate HA/PCL composite scaffolds for bone tissue engineering by a layer manufacturing technology, paste extruding deposition, and to characterize in vitro and in vivo biocompatibilities of the scaffolds. This study discusses the mechnical properties, proliferation and differentiation of osteogenic cells, and tissue in-growth and bone regeneration behavior using animal models.

  • PDF

A Fast Inter Prediction Encoding Algorithm for Real-time Compression of H.264/AVC with High Complexity (고 복잡도 H.264/AVC의 실시간 압축을 위한 고속 인터 예측 부호화 기법)

  • Kim, Young-Hyun;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.411-412
    • /
    • 2006
  • In this paper, we proposed a fast algorithm for inter prediction included the most complexity in H.264/AVC. It decide search range according to direction of predicted motion vector, and then perform adaptive candidate spiral search. Simultaneously, it perform motion estimation of variable loop with threshold for variable block size. Conclusively, it is implemented in JM FME with high complexity applying to rate-distortion optimization. Experimental results show that significant complexity reduction is achieved while the degradation in video quality is negligible.

  • PDF

Flexible and Transparent Silica Aerogels: An Overview

  • Parale, Vinayak G.;Lee, Kyu-Yeon;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.184-199
    • /
    • 2017
  • Silica aerogels are attracting attention due to certain outstanding properties such as low bulk density, low thermal conductivity, high surface area, high porosity, high transparency and flexibility. Due to these extraordinary properties of aerogels, they have become a promising candidate in thermal superinsulation. The silica-based aerogels are brittle in nature, which constrains their large scale-application. It is necessary to achieve transparency and flexibility of silica-based aerogels at the same time and with the same porous structure for optical field applications. Therefore, the present review focuses on the different sol-gel synthesis parameters and precursors in the synthesis of flexible as well as transparent silica aerogels. Also, a brief overview of reported flexible and transparent aerogels with some important properties and applications is provided.

MOF-based Sensing Materials for Non-enzymatic Glucose Sensors

  • Jingjing Liu;Xiaoting Zha;Yajie Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.32-50
    • /
    • 2024
  • Diabetes mellitus is one of the common chronic diseases, seriously threating to human health. The continuous monitoring of blood glucose concentration can effectively prevent diabetic diseases. The sensing performance of glucose non-enzymatic sensors is mainly determined by working electrode materials. Metal-organic frameworks (MOFs) are recognized as promising candidate for glucose sensor application, due to its large surface areas, ordered porous structure and nearly infinite designability. In this review, the sensing performance, research progress and future challenge of non-enzymatic glucose sensors based on MOF-based materials in recent years are presented. We hope that this review would provide valuable technology guidance for high performance non-enzymatic glucose sensors based on MOFs.