• 제목/요약/키워드: candidate materials

검색결과 809건 처리시간 0.025초

Characterization of InSbTe nanowires grown directly by MOCVD for high density PRAM application

  • Ahn, Jun-Ku;Park, Kyoung-Woo;Jung, Hyun-June;Park, Yeon-Woong;Hur, Sung-Gi;Yoon, Soon-Gil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2009
  • Recently, the nanowire configuration of GST showed nanosecond-level phase switch at very low power dissipation, suggesting that the nanowires could be ideal for data storage devices. In spite of many advantages of IST materials, their feasibility in both thin films and nanowires for electronic memories has not been extensively investigated. The synthesis of the chalcogenide nanowires was mainly preformed via a vapor transport process such as vapor-liquid-solid (VLS) growth at a high temperature. However, in this study, IST nanowires as well as thin films were prepared at a low temperature (${\sim}250^{\circ}C$) by metal organic chemical vapor deposition(MOCVD) method, which is possible for large area deposition. The IST films and/or nanowires were selectively grown by a control of working pressure at a constant growth temperature by MOCVD. In-Sb-Te NWs will be good candidate materials for high density PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

니켈기 합금 Alloy 617의 950℃ 대기/헬륨 분위기에서 산화거동 고찰 (Investigation of Oxidation Behavior of Alloy 617 under Air/Helium Environments at 950℃)

  • 정수진;이경근;김동진
    • Corrosion Science and Technology
    • /
    • 제17권5호
    • /
    • pp.218-224
    • /
    • 2018
  • Alloy 617 is a candidate Ni-based superalloy for intermediate heat exchanger (IHX) of a high-temperature gas reactor (VHTR), because of its good creep strength and corrosion resistance at high temperature. Small amount of impurities such as $H_2O$, $H_2$, CO and $CH_4$ are introduced inevitably in helium, as a coolant during operation of a VHTR. Reactions of material and impurities are accelerated with increase of temperature to $950^{\circ}C$ of operating temperature of a VHTR, leading to material corrosion aggravation. In this circumstance, high-temperature corrosion tests were performed at $950^{\circ}C$ in air and impure helium environments, up to 250 hours in this study. Oxidation rate of $950^{\circ}C$ in an air environment was higher than that of impure helium, explained by difference in outer oxide morphology and microstructure as a function of oxygen partial pressure. An equiaxed Cr-rich surface oxide layer was formed in an air environment, and a columnar Cr-rich oxide was formed in an impure helium environment.

Ti 완충층 두께에 따른 In2O3/Ti 적층박막의 전기적, 광학적 특성 변화 (Effect of Ti Buffer Layer Thickness on the Electrical and Optical Properties of In2O3/Ti bi-layered Films)

  • 문현주;전재현;공태경;김대일
    • 열처리공학회지
    • /
    • 제28권6호
    • /
    • pp.296-299
    • /
    • 2015
  • $In_2O_3/Ti$ bi-layered films were deposited on glass substrate at room temperature with radio frequency (RF) and direct current (DC) magnetron sputtering to consider the effect of Ti buffer layer on the electrical and optical properties. In a comparison of figure of merit, $In_2O_3$ 90 nm/Ti 10 nm thin films show the higher opto-electrical performance of $3.0{\times}10^{-4}{\Omega}^{-1}$ than that of the $In_2O_3$ single layer films ($2.6{\times}10^{-4}{\Omega}^{-1}$). From the observed results, it is supposed that the $In_2O_3\;90nm/TiO_2$ 10 nm bi-layered films may be an alternative candidate for transparent electrode in a transparent thin film transistor device.

Promoted Bone Regeneration by Nanoparticle-Type Sustained Release System of BMP-2 in Hydrogel

  • Chung, Yong-Il;Lee, Seung-Young;Tae, Gi-Yoong;Ahn, Kang-Min;Jeon, Seung-Ho;Lee, Jong-Ho
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.264-264
    • /
    • 2006
  • The nanoparticle-hydrogel complex as a new bone defect replacement matrix, which is composed of the nanoparticles for the sustained release of BMP and the hydrogel for filling the bone defect site and playing a role as a matrix where new bone can grow, is presented. In vivo evaluation of bone formation was characterized by soft X-ray, MT staining, and calcium assay, based on the rat calvarial critical size defect model. The effective bone regeneration was achieved by the BMP-2 loaded nanoparticles in fibrin gel, compare to bare fibrin gel, the nanoparticle-fibrin gel complex without BMP-2, or the BMP-2 in fibrin gel, in terms of the new bone area and the gray level in X-ray, the bone marrow are, and the calcium content in the initial defect site. These findings suggest that the BMP-2 loaded nanoparticle-fibrin gel complex can a promising candidate for a new bone defect replacement matrix.

  • PDF

Li2ZrO3 분리막의 제조와 이산화탄소 선택투과 전후의 기계적 특성 평가 (Fabrication of Li2ZrO3 Membrane and Evaluation on the Mechanical Properties Before and After CO2 Separation)

  • 박상현;이시우;유지행;우상국;이기성
    • 한국세라믹학회지
    • /
    • 제44권1호
    • /
    • pp.58-64
    • /
    • 2007
  • In this study, we investigated $Li_2ZrO_3$ membrane as a candidate material for high-temperature $CO_2$ separation and evaluated mechanical property. $Li_2ZrO_3$ powder was synthesized by solid state reaction of $Li_2CO_3\;and\;ZrO_2$. Then we fabricated $Li_2ZrO_3$ tape using tape casting method. Dense $Li_2ZrO_3$ membrane prepared by sintering at $1600^{\circ}C$ for 2 h after pressing $Li_2ZrO_3$ tape using lamination machine. Mechanical properties before and after $CO_2$ absorption of fabricated $Li_2ZrO_3$ membrane such as Hertzian indentation, Victors hardness and 3-point bending testing were evaluated.

신선 가공된 이상 조직강의 냉간 성형성에 대한 연구 (A Study on the Cold Formability of Drawn Dual-Phase Steels)

  • 박경수;최상우;이덕락;이종수
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

NITE-SiC 복합재료의 미세구조 특성에 미치는 섬유배열방향 영향 (Effects of Fiber Arrangement Direction on Microstructure Characteristics of NITE-SiC Composites)

  • 이영주;윤한기;박준수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.158-161
    • /
    • 2006
  • SiC materials have been extensively studied for high temperature components in advanced energy conversion system and advanced gas turbine. However, the brittle characteristics of SiC such as law fracture toughness and law strain-to fracture impose a severe limitation on the practical applications of SiC materials. SiC/SiC composites can be considered as a promising candidate in various structural materials, because of their good fracture toughness. In this composite system, the direction of SiC fiber will give an effect to the mechanical properties. It is therefore important to control a properdirection of SiC fiber for the fabrication of high performance SiC/SiC composites. In this study, unidirection and two dimension woven structures of SiC/SiC composites were prepared starting from Tyranno SA fiber. SiC matrix was obtained by nano-powder infiltration and transient eutectoid (NITE) process. Effect of microstructure and density on the sintering temperature in NITE-SiC/SiC composites are described and discussed with the fiber direction of unidirection and two dimension woven structures.

  • PDF

특수섬유를 이용한 보안용지의 개발 (Use of New Fibers for the Development of Security Paper)

  • 정선영;길상혁;김영욱;서영범
    • 펄프종이기술
    • /
    • 제44권1호
    • /
    • pp.16-23
    • /
    • 2012
  • Use of security papers for monetary papers, gift certificates, and lottery tickets increases every year. As the use of security papers increase, there are more possibility of counterfeits. In this study, we used unique fibers from the sea to increase the difficulties against counterfeiting. The red algae fibers give opacity as much as calcium carbonates, and have unique shape in length ($500{\sim}900\;{\mu}m$) and width ($1{\sim}4\;{\mu}m$) to be discerned from other natural fibers such as wood and cotton fibers. We mixed red algae fibers to wood fibers in a series of fixed ratios to make single and multiply papers for making security papers. Paper with dyed red algae fibers were also used. Paper made without fillers gave enough opacity for printing when red algae fibers were used more than 20% of the fiber furnish. Those properties may allow red algae fibers to be a potential candidate for fiber raw materials of security paper.

Bi-2212 고온초전도튜브와 인듐솔더의 접합특성연구 (A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder)

  • 오성용;현옥배;김찬중
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.179-183
    • /
    • 2006
  • As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from $155^{\circ}C\;to\;165^{\circ}C$ in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  • PDF

Research Trend of Additive Manufacturing Technology - A=B+C+D+E, add Innovative Concept to Current Additive Manufacturing Technology: Four Conceptual Factors for Building Additive Manufacturing Technology -

  • Choi, Hanshin;Byun, Jong Min;Lee, Wonsik;Bang, Su-Ryong;Kim, Young Do
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.149-169
    • /
    • 2016
  • Additive manufacturing (AM) is defined as the manufacture of three-dimensional tangible products by additively consolidating two-dimensional patterns layer by layer. In this review, we introduce four fundamental conceptual pillars that support AM technology: the bottom-up manufacturing factor, computer-aided manufacturing factor, distributed manufacturing factor, and eliminated manufacturing factor. All the conceptual factors work together; however, business strategy and technology optimization will vary according to the main factor that we emphasize. In parallel to the manufacturing paradigm shift toward mass personalization, manufacturing industrial ecology evolves to achieve competitiveness in economics of scope. AM technology is indeed a potent candidate manufacturing technology for satisfying volatile and customized markets. From the viewpoint of the innovation technology adoption cycle, various pros and cons of AM technology themselves prove that it is an innovative technology, in particular a disruptive innovation in manufacturing technology, as powder technology was when ingot metallurgy was dominant. Chasms related to the AM technology adoption cycle and efforts to cross the chasms are considered.