• Title/Summary/Keyword: cancer treatments

Search Result 782, Processing Time 0.062 seconds

Understanding EGFR Signaling in Breast Cancer and Breast Cancer Stem Cells: Overexpression and Therapeutic Implications

  • Alanazi, Ibrahim O;Khan, Zahid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.445-453
    • /
    • 2016
  • Epidermal growth factor receptors (EGFRs/HERs) and downstream signaling pathways have been implicated in the pathogenesis of several malignancies including breast cancer and its resistance to treatment with chemotherapeutic drugs. Consequently, several monoclonal antibodies as well as small molecule inhibitors targeting these pathways have emerged as therapeutic tools in the recent past. However, studies have shown that utilizing these molecules in combination with chemotherapy has yielded only limited success. This review describes the current understanding of EGFRs/HERs and associated signaling pathways in relation to development of breast cancer and responses to various cancer treatments in the hope of pointing to improved prevention, diagnosis and treatment. Also, we review the role of breast cancer stem cells (BCSCs) in disease and the potential to target these cells.

Prevalence, Pathophysiology, Screening and Management of Osteoporosis in Gastric Cancer Patients

  • Lim, Jung-Sub;Lee, Jong-Inn
    • Journal of Gastric Cancer
    • /
    • v.11 no.1
    • /
    • pp.7-15
    • /
    • 2011
  • Osteoporosis in gastric cancer patients is often overlooked or even neglected despite its high prevalence in these patients. Considering that old age, malnutrition, chronic disease, chemotherapy, decreased body mass index and gastrectomy are independent risk factors for osteoporosis, it is reasonable that the prevalence of osteoporosis in gastric cancer patients would be high. Many surviving patients suffer from back pain and pathological fractures, which are related to osteoporosis. Fractures have obvious associated morbidities, negative impact on quality of life, and impose both direct and indirect costs. In the era of a >55.6% 5-year survival rate of gastric cancer and increased longevity in gastric cancer patients, it is very important to eliminate common sequelae such as osteoporosis. Fortunately, the diagnosis of osteoporosis is well established and many therapeutic agents have been shown to be effective and safe not only in postmenopausal females but also in elderly males. Recently, effective treatments of gastric cancer patients with osteoporosis using bisphosphonates, which are commonly used in postmenopausal woman, were reported.

Contradictory Relationships between Cancer and Normal Cells and Implications for Anti-cancer Therapy

  • Gou, Xing-Chun;Kong, Derek;Tang, Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5143-5147
    • /
    • 2015
  • Cancer treatment remains a serious problem worldwide. Analysis of the relationship between cancer cells and normal cells reveals that these two share characteristics in contradiction, thus could be analyzed by using contradictory principles. Under the theory of contradictory principles, induction of a dormant state or reversal of cancer cells is an important treatment strategy beyond traditional cytotoxic therapy. Normal cells are also the targets and under the influence of anti-cancer treatments and should be considered during therapy. Findings based on crosstalk between these two cell types may offer opportunities for the development of new biomarkers and therapies.

A non-replicating oncolytic vector as a novel therapeutic tool against cancer

  • Kaneda, Yasufumi
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.773-780
    • /
    • 2010
  • Cancers are still difficult targets despite recent advances in cancer therapy. Due to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed. Gene therapy has been expected to bring a breakthrough to cancer therapy, but it has not yet been successful. Gene therapy also should be combined with other treatments to enhance multiple therapeutic pathways. In this view, gene delivery vector itself should be equipped with intrinsic anti-cancer activities. HVJ (hemagglutinating virus of Japan; Sendai virus) envelope vector (HVJ-E) was developed to deliver therapeutic molecules. HVJ-E itself possessed anti-tumor activities such as the generation of anti-tumor immunities and the induction of cancer-selective apoptosis. In addition to the intrinsic anti-tumor activities, therapeutic molecules incorporated into HVJ-E enabled to achieve multi-modal therapeutic strategies in cancer treatment. Tumor-targeting HVJ-E was also developed. Thus, HVJ-E will be a novel promising tool for cancer treatment.

Cancer Metabolism: Fueling More than Just Growth

  • Lee, Namgyu;Kim, Dohoon
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.847-854
    • /
    • 2016
  • The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slowergrowing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

Tumor bioenergetics: An emerging avenue for cancer metabolism targeted therapy

  • Kee, Hyun Jung;Cheong, Jae-Ho
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2014
  • Cell proliferation is a delicately regulated process that couples growth signals and metabolic demands to produce daughter cells. Interestingly, the proliferation of tumor cells immensely depends on glycolysis, the Warburg effect, to ensure a sufficient amount of metabolic flux and bioenergetics for macromolecule synthesis and cell division. This unique metabolic derangement would provide an opportunity for developing cancer therapeutic strategy, particularly when other diverse anti-cancer treatments have been proved ineffective in achieving durable response, largely due to the emergence of resistance. Recent advances in deeper understanding of cancer metabolism usher in new horizons of the next generation strategy for cancer therapy. Here, we discuss the focused review of cancer energy metabolism, and the therapeutic exploitation of glycolysis and OXPHOS as a novel anti-cancer strategy, with particular emphasis on the promise of this approach, among other cancer metabolism targeted therapies that reveal unexpected complexity and context-dependent metabolic adaptability, complicating the development of effective strategies.

Current Development Status of Cytokines for Cancer Immunotherapy

  • Kyoung Song
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.

Endpoint of Cancer Treatment: Targeted Therapies

  • Topcul, Mehmet;Cetin, Idil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4395-4403
    • /
    • 2014
  • Nowadays there are several limitations in cancer treatment. One of these is the use of conventional medicines which not only target cancer cells and thus also cause high toxicity precluding effective treatment. Recent elucidation of mechanisms that cause cancer has led to discovery of novel key molecules and pathways which have have become successful targets for the treatments that eliminate only cancer cells. These so-called targeted therapies offer new hope for millions of cancer patients, as briefly reveiwed here focusing on different types of agents, like PARP, CDK, tyrosine kinase, farnysyl transferase and proteasome inhibitors, monoclonal antibodies and antiangiogenic agents.

Clinical Efficacy and Possible Applications of Genomics in Lung Cancer

  • Alharbi, Khalid Khalaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1693-1698
    • /
    • 2015
  • The heterogeneous nature of lung cancer has become increasingly apparent since introduction of molecular classification. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. Activating alterations in several potential driver oncogenic genes have been identified, including EGFR, ROS1 and ALK and understanding of their molecular mechanisms underlying development, progression, and survival of lung cancer has led to the design of personalized treatments that have produced superior clinical outcomes in tumours harbouring these mutations. In light of the tsunami of new biomarkers and targeted agents, next generation sequencing testing strategies will be more appropriate in identifying the patients for each therapy and enabling personalized patients care. The challenge now is how best to interpret the results of these genomic tests, in the context of other clinical data, to optimize treatment choices. In genomic era of cancer treatment, the traditional one-size-fits-all paradigm is being replaced with more effective, personalized oncologic care. This review provides an overview of lung cancer genomics and personalized treatment.

Updates of Chemotherapy for Pancreatic Cancer (췌장암 항암화학요법의 최신 지견)

  • Min Je Sung
    • Journal of Digestive Cancer Research
    • /
    • v.11 no.3
    • /
    • pp.147-156
    • /
    • 2023
  • Pancreatic cancer is one of the most aggressive cancers, and it is expected to become the second-leading cause of cancer-related death in the United States by 2030. Its 5-year survival rate is <10% and approximately 15% of cases are eligible for surgical treatment during diagnosis. Furthermore, the risk of recurrence within 1 year postoperative is as high as 50%. Therefore, chemotherapy plays a crucial role in pancreatic cancer treatment. Survival rates are speculated to have improved since the introduction of FOLFIRINOX and gemcitabine/nab-paclitaxel combination therapy for metastatic pancreatic cancer in the 2010s. Additionally, the implementation of both neoadjuvant and adjuvant treatments in resectable and borderline resectable pancreatic cancer caused better outcomes compared to upfront surgery. Recently, not only have these medications advanced in development, but so have PARP inhibitors and KRAS inhibitors, contributing to the treatment landscape. This study aimed to explore the latest insights into chemotherapy for pancreatic cancer.