• 제목/요약/키워드: cancer genomics

검색결과 292건 처리시간 0.02초

Long-term depletion of cereblon induces mitochondrial dysfunction in cancer cells

  • Park, Seulki;Kim, Kidae;Haam, Keeok;Ban, Hyun Seung;Kim, Jung-Ae;Park, Byoung Chul;Park, Sung Goo;Kim, Sunhong;Kim, Jeong-Hoon
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.305-310
    • /
    • 2021
  • Cereblon (CRBN) is a multi-functional protein that acts as a substrate receptor of the E3 ligase complex and a molecular chaperone. While CRBN is proposed to function in mitochondria, its specific roles are yet to be established. Here, we showed that knockdown of CRBN triggers oxidative stress and calcium overload in mitochondria, leading to disruption of mitochondrial membrane potential. Notably, long-term CRBN depletion using PROteolysis TArgeting Chimera (PROTAC) induced irreversible mitochondrial dysfunction, resulting in cell death. Our collective findings indicate that CRBN is required for mitochondrial homeostasis in cells.

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon;Jung, Yeonjoo;Jun, Yukyung;Park, Sungsu;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • 제19권1호
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

Functional annotation of uncharacterized proteins from Fusobacterium nucleatum: identification of virulence factors

  • Kanchan Rauthan;Saranya Joshi;Lokesh Kumar;Divya Goel;Sudhir Kumar
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.21.1-21.14
    • /
    • 2023
  • Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as "Uncharacterized." Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.

Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis

  • Yue Hu;Jun Zhou
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.45.1-45.11
    • /
    • 2023
  • Nonalcoholic fatty liver disease (NAFLD) is a common type of chronic liver disease, with severity levels ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). The extent of liver fibrosis indicates the severity of NASH and the risk of liver cancer. However, the mechanism underlying NASH development, which is important for early screening and intervention, remains unclear. Weighted gene co-expression network analysis (WGCNA) is a useful method for identifying hub genes and screening specific targets for diseases. In this study, we utilized an mRNA dataset of the liver tissues of patients with NASH and conducted WGCNA for various stages of liver fibrosis. Subsequently, we employed two additional mRNA datasets for validation purposes. Gene set enrichment analysis (GSEA) was conducted to analyze gene function enrichment. Through WGCNA and subsequent analyses, complemented by validation using two additional datasets, we identified five genes (BICC1, C7, EFEMP1, LUM, and STMN2) as hub genes. GSEA analysis indicated that gene sets associated with liver metabolism and cholesterol homeostasis were uniformly downregulated. BICC1, C7, EFEMP1, LUM, and STMN2 were identified as hub genes of NASH, and were all related to liver metabolism, NAFLD, NASH, and related diseases. These hub genes might serve as potential targets for the early screening and treatment of NASH.

형질전환 식물체에서의 복합 단일 항체 단백질 생산 (Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant)

  • 안미현;오은이;송미라;;김현순;정혁;고기성
    • 생명과학회지
    • /
    • 제19권1호
    • /
    • pp.123-128
    • /
    • 2009
  • 식물 생명공학 기술을 이용해 인간에게 유용한 치료단백질 및 백신을 생산하는 것은 최근에 각광받고 있는 연구 분야이다. 식물을 이용한 유용 단백질 생산은 다른 시스템에 비하여 경제적일 뿐만 아니라 병원성 인자에 대한 안전성이 있어서 유용하다고 할 수 있다. 암세포 표면에 특이적으로 발현하고 있는 분자 와 당 구조를 각각 인지할 수 있는 두 종류의 항체를 동시에 투여하는 면역 치료는 질병의 치료를 유도하는 데 있어서 효과적일 수 있다. 본 연구는 기존에 본 연구팀에서 확보하고 있었던 두 종류의 항체 단백질(mAb CO17-1A, mAb BR55) 생산 형질전환 식물체를 이용하여 상호교배를 통하여 한 식물에서 두 종류의 항체 단백질을 모두 생산하는 식물 발현 시스템 구축에 관한 연구이다. 각기 다른 유전자를 갖고 있는 식물체로부터 수분을 유도하여 씨앗을 얻고 이 씨앗을 배양하여 완벽한 식품 개체로 성장시켰으며, 그 식물체로부터 DNA, RNA, 단백질을 분리하여 형질전환 유전자를 포함하고 있는지 여부를 확인하였다. 그 결과, 개체에 차이는 있지만, 한 식물에서 두 항체 유전자를 갖고 있음을 확인할 수 있었고, 이 유전자는 식물체 내에서 안정적으로 transcription 되었음을 확인하였다. 또한, 두 종류의 항체를 동시 생산하는 식물체에서 분리한 단백질은 한 종류의 항체 단백질만 생산하는 식물체에 비하여 수용성 단백질 단위당 항체 발현률이 높게 나타나는 것을 확인하였다. 따라서 본 연구를 통하여 식물을 이 용한 유용 단백질 생산 효율을 높일 수 있는 시스템을 확립하였으며 앞으로 추가적으로 생산한 항체의 생물학적 활성 및 항암 효능, 당 구조 분석 등에 대한 연구용 수행한다면, 식물 생명공학적 방법을 통한 항체 생산에 대한 새로운 가능성을 제시할 수 있을 것으로 기대된다.

두경부 편평상피세포암주에서 방사선 내성 관련 유전인자의 확인 (Identifying Genes Related with Radiation Resistance in Oral Squamous Cell Carcinoma Cell Lines)

  • 이세영;설정훈;박행란;조남훈;최윤표;라선영;백승재;황준연;김세헌
    • 대한두경부종양학회지
    • /
    • 제27권2호
    • /
    • pp.190-197
    • /
    • 2011
  • Background and Objective : Radiation resistance(RR) is one of main determinants of treatment outcome in oral squamous cell carcinoma(OSCC), but accurate prediction of RR is difficult. We aim to establish RR OSCC cell lines and identify genes related with RR by a measurement of altered gene expression after inducing RR. Material and Methods : OSCC cell lines, SCC15, SCC25 and QLL1, were treated with 2Gy radiation per session, and parts of them were alive in finally accumulated dosage of 60Gy through 30 times repetition of radiotherapy for inducing RR cell lines. We compared results of cDNA array and proteomics in non-radiated cell lines and RR cell lines to detect changes of gene expression. Western blot was used for the validation of results. Results : cDNA array revealed 265 commonly up-regulated genes and 268 commonly down-regulated genes in 3 RR cell lines comparing their non-radiated counterpart. Among them, 30 cancer related genes were obtained. Proteomics showed 51 commonly altered protein expressions in 3 RR cell lines and 18 cancer related proteins were obtained. Among the detected genes, we found NM23-H1 and PA2G4 were over-expressed in both cDNA array and proteomics. Western blot showed increased expression of NME1 in RR cell lines but not in PA2G4. Conclusion: We concluded that NM23-H1 may be a candidate of RR related gene and over-expression of NM23-H1 could be a biomarker to predict RR in OSCC.

Risk factors for cytological progression in HPV 16 infected women with ASC-US or LSIL: The Korean HPV cohort

  • So, Kyeong A;Kim, Seon Ah;Lee, Yoo Kyung;Lee, In Ho;Lee, Ki Heon;Rhee, Jee Eun;Kee, Mee Kyung;Cho, Chi Heum;Hong, Sung Ran;Hwang, Chang Sun;Jeong, Mi Seon;Kim, Ki Tae;Ki, Moran;Hur, Soo Young;Park, Jong Sup;Kim, Tae Jin
    • Obstetrics & gynecology science
    • /
    • 제61권6호
    • /
    • pp.662-668
    • /
    • 2018
  • Objective This study was to identify the risk factors for cytological progression in women with atypical squamous cells of undetermined significance (ASC-US) or low-grade squamous intraepithelial lesions (LSIL). Methods We analyzed data from women infected with the human papillomavirus (HPV) who participated in the Korean HPV cohort study. The cohort recruited women aged 20-60 years with abnormal cervical cytology (ASC-US or LSIL) from April 2010. All women were followed-up at every 6-month intervals with cervical cytology and HPV DNA testing. Results Of the 1,158 women included, 654 (56.5%) and 504 (43.5%) women showed ASC-US and LSIL, respectively. At the time of enrollment, 143 women tested positive for HPV 16 (85 single and 58 multiple infections). Cervical cytology performed in the HPV 16-positive women showed progression in 27%, no change in 23%, and regression in 50% of the women at the six-month follow-up. The progression rate associated with HPV 16 infection was higher than that with infection caused by other HPV types (relative risk [RR], 1.75; 95% confidence interval [CI], 1.08-2.84; P=0.028). The cytological progression rate in women with persistent HPV 16 infection was higher than that in women with incidental or cleared infections (P<0.001). Logistic regression analysis showed a significant relationship between cigarette smoking and cytological progression (RR, 4.15; 95% CI, 1.01-17.00). Conclusion The cytological progression rate in HPV 16-positive women with ASC-US or LSIL is higher than that in women infected with other HPV types. Additionally, cigarette smoking may play a role in cytological progression.

Molecular Cloning and Characterization of Bovine HMGA1 Gene

  • Yu, S.L.;Chung, H.J.;Sang, B.C.;Bhuiyan, M.S.A.;Yoon, D.;Kim, K.S.;Jeon, J.T.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1662-1669
    • /
    • 2007
  • The high mobility group AT-hook1 (HMGA1) proteins are known to be related to the regulation of gene transcription, replication and promotion of metastatic progression in cancer cells. The loss of expression by disrupting the HMGA1 gene affects insulin signaling and causes diabetes in the mouse. Previously identified single nucleotide polymorphism (SNP) of HMGA1 was significantly associated with fat deposition traits in the pig. In this study, we identified 3,935 bp nucleotide sequences from exon 5 to exon 8 of the bovine HMGA1 gene and its mRNA expression was observed by quantitative real-time PCR. Six single nucleotide polymorphisms in the bovine HMGA1 gene were detected and the allele frequencies of these SNPs were investigated using the PCR-RFLP method in nine cattle breeds including Limousin, Simmental, Brown Swiss, Hereford, Angus, Charolais, Hanwoo, Brahman and Red Chittagong cattle. The map location showed that the bovine HMGA1 gene was also closely located with a previously identified meat quality QTL region indicating this gene is the most likely positional candidate for meat quality traits in cattle.

Associations between an MDM2 gene polymorphism and ulcerative colitis by ARMS-PCR

  • Doulabi, Mahsa Sadat Hashemi;Moghaddam, Reza Goleyjani;Salehzadeh, Ali
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.9.1-9.5
    • /
    • 2020
  • Ulcerative colitis is a form of inflammatory bowel disease characterized by chronic inflammation of the colon and rectum. The abnormal lesions in the digestive system caused by ulcerative colitis and intermittent colitis are of major clinical importance. MDM2 is a phospho-protein that functions as a ubiquitin ligase for p53. Recently, a T>G substitution in the promoter of the MDM2 gene (rs309) has been identified. In this case-control study, 174 ulcerative colitis biopsy samples and 82 control samples were collected from colonoscopy centers, hospitals, and clinics in Mazandaran and Gilan Provinces in Iran from October 2014 to May 2015. This MDM2 polymorphism was investigated in DNA samples (extracted from biopsy samples) by amplification-refractory mutation system polymerase chain reaction. The mean age of patients with ulcerative colitis was 46.5 years (range, 28 to 69 years) and that of control individuals was 45.3 years (range, 26 to 71 years). Seventy-eight patients (44.82%) were men and 96 (55.18%) were women. The distribution of the TT, TG, and GG genotypes was 17.93%, 27.59%, and 34.48%, respectively, in the ulcerative colitis patients and 31.70%, 24.40%, and 43.90%, respectively, in the control individuals (odds ratio of GG for ulcerative colitis, 7.142; 95% confidence interval, 2.400 to 9.542; p = 0.001). It was found that a single-nucleotide polymorphism at rs309 in the MDM2 gene was associated with ulcerative colitis. A direct relationship was found between age and ulcerative colitis, while no relationship was found with sex. This finding is of note because the occurrence of intestinal inflammation and subsequent ulcers can precede the development of cancer.