• Title/Summary/Keyword: cancer genomics

Search Result 292, Processing Time 0.025 seconds

Clinical Efficacy and Possible Applications of Genomics in Lung Cancer

  • Alharbi, Khalid Khalaf
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1693-1698
    • /
    • 2015
  • The heterogeneous nature of lung cancer has become increasingly apparent since introduction of molecular classification. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. Activating alterations in several potential driver oncogenic genes have been identified, including EGFR, ROS1 and ALK and understanding of their molecular mechanisms underlying development, progression, and survival of lung cancer has led to the design of personalized treatments that have produced superior clinical outcomes in tumours harbouring these mutations. In light of the tsunami of new biomarkers and targeted agents, next generation sequencing testing strategies will be more appropriate in identifying the patients for each therapy and enabling personalized patients care. The challenge now is how best to interpret the results of these genomic tests, in the context of other clinical data, to optimize treatment choices. In genomic era of cancer treatment, the traditional one-size-fits-all paradigm is being replaced with more effective, personalized oncologic care. This review provides an overview of lung cancer genomics and personalized treatment.

Promoter demethylation mediates the expression of ZNF645, a novel cancer/testis gene

  • Bai, Gang;Liu, Yunqiang;Zhang, Hao;Su, Dan;Tao, Dachang;Yang, Yuan;Ma, Yongxin;Zhang, Sizhong
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.400-406
    • /
    • 2010
  • Cancer/testis (CT) antigens exhibit highly tissue-restricted expression and are considered promising targets for cancer vaccines. Here we identified a novel CT gene ZNF645 which restrictively expresses in normal human testes and lung cancer patients (68.3%). To investigate the promoter methylation status of ZNF645, we carried out bisulfite genomic sequencing and found that the CpG island in its promoter was heavily methylated in normal lung tissues without the expression of ZNF645, whereas there was high demethylation in normal human testes and lung carcinoma tissues with its expression. Also ZNF645 could be remarkably activated in A549 and HEK293T cells treated by DNA demethylation agent 5'-aza-2'-deoxycytidine. And the dual luciferase assay revealed that the promoter activity of the ZNF645 was inhibited by methylation of the CpG island region. Therefore, we proposed that ZNF645 is a CT gene and activated in human testis and lung cancers by demethylation of its promoter region.

A Novel Pyruvate Kinase M2 Activator Compound that Suppresses Lung Cancer Cell Viability under Hypoxia

  • Kim, Dong Joon;Park, Young Soo;Kim, Nam Doo;Min, Sang Hyun;You, Yeon-Mi;Jung, Yuri;Koo, Han;Noh, Hanmi;Kim, Jung-Ae;Park, Kyung Chan;Yeom, Young Il
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.373-379
    • /
    • 2015
  • Pyruvate kinase M2 isoform (PKM2), a rate-limiting enzyme in the final step of glycolysis, is known to be associated with the metabolic rewiring of cancer cells, and considered an important cancer therapeutic target. Herein, we report a novel PKM2 activator, PA-12, which was identified via the molecular docking-based virtual screening. We demonstrate that PA-12 stimulates the pyruvate kinase activity of recombinant PKM2 in vitro, with a half-maximal activity concentration of $4.92{\mu}M$, and effectively suppresses both anchorage-dependent and -independent growth of lung cancer cells in non-essential amino acid-depleted medium. In addition, PA-12 blocked the nuclear translocalization of PKM2 in lung cancer cells, resulting in the inhibition of hypoxia response element (HRE)-mediated reporter activity as well as hypoxia-inducible factor 1 (HIF-1) target gene expression, eventually leading to the suppression of cell viability under hypoxia. We also verified that the effects of PA-12 were dependent on PKM2 expression in cancer cells, demonstrating the specificity of PA-12 for PKM2 protein. Taken together, our data suggest that PA-12 is a novel and potent PKM2 activator that has therapeutic implications for lung cancer.

Cancer Genomics Object Model: An Object Model for Cancer Research Using Microarray

  • Park, Yu-Rang;Lee, Hye-Won;Cho, Sung-Bum;Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.29-34
    • /
    • 2005
  • DNA microarray becomes a major tool for the investigation of global gene expression in all aspects of cancer and biomedical research. DNA microarray experiment generates enormous amounts of data and they are meaningful only in the context of a detailed description of microarrays, biomaterials, and conditions under which they were generated. MicroArray Gene Expression Data (MGED) society has established microarray standard for structured management of these diverse and large amount data. MGED MAGE-OM (MicroArray Gene Expression Object Model) is an object oriented data model, which attempts to define standard objects for gene expression. To assess the relevance of DNA microarray analysis of cancer research it is required to combine clinical and genomics data. MAGE-OM, however, does not have an appropriate structure to describe clinical information of cancer. For systematic integration of gene expression and clinical data, we create a new model, Cancer Genomics Object Model.

  • PDF

Gene Expression Profile and Its Interpretation in Squamous Cell Lung Cancer

  • Park, Dong-Yoon;Kim, Jung-Min;Kim, Ja-Eun;Yoo, Chang-Hyuk;Lee, Han-Yong;Song, Ji-Young;Hwang, Sang-Joon;Yoo, Jae-Cheal;Kim, Sung-Han;Park, Jong-Ho;Yoon, Jeong-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.273-278
    • /
    • 2006
  • 95 squamous cell lung carcinoma samples (normal tissue: 40 samples, tumor: 55 samples) were analyzed with 8 K cDNA microarray. 1-way ANOVA test was employed to select differentially expressed genes in tumor with FDR<0.01. Among the selected 1,655 genes, final 212 genes were chosen according to the expression fold change and used for following analysis. The expression of up-regulated 64 genes was verified with Reverse Transcription PCR and 10 genes were identified as candidates for SCC markers. In our opinion, those candidates can be exploited as diagnostic or therapeutic purposes. Gene Ontology (GO) based analysis was performed using those 212 genes, and following categories were revealed as significant biological processes: Immune response (GO: 0006955), antigen processing (GO: 0030333), inflammatory response (GO: 0006954), Cell adhesion (GO: 0007155), and Epidermis differentiation (GO: 0008544). Gene set enrichment analysis (GSEA) also carried out on overall gene expression profile with 522 functional gene sets. Glycolysis, cell cycle, K-ras and amino acid biosynthesis related gene sets were most distinguished. These results are consistent with the known characteristics of SCC and may be interconnected to rapid cell proliferation. However, the unexpected results from ERK activation in squamous cell carcinoma gripped our attention, and further studies are under progress.

Structure and apoptotic function of p73

  • Yoon, Mi-Kyung;Ha, Ji-Hyang;Lee, Min-Sung;Chi, Seung-Wook
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2015
  • p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.

Novel target genes of hepatocellular carcinoma identified by chip-based functional genomic approaches

  • Kim Dong-Min;Min Sang-Hyun;Lee Dong-Chul;Park Mee-Hee;Lim Soo-Jin;Kim Mi-Na;Han Sang-Mi;Jang Ye-Jin;Yang Suk-Jin;Jung Hai-Yong;Byun Sang-Soon;Lee Jeong-Ju;Oh Jung-Hwa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.83-89
    • /
    • 2006
  • Cellular functions are carried out by a concerted action of biochemical pathways whose components have genetic interactions. Abnormalities in the activity of the genes that constitute or modulate these pathways frequently have oncogenic implications. Therefore, identifying the upstream regulatory genes for major biochemical pathways and defining their roles in carcinogenesis can have important consequences in establishing an effective target-oriented antitumor strategy We have analyzed the gene expression profiles of human liver cancer samples using cDNA microarray chips enriched in liver and/or stomach-expressed cDNA elements, and identified groups of genes that can tell tumors from non-tumors or normal liver, or classify tumors according to clinical parameters such as tumor grade, age, and inflammation grade. We also set up a high-throughput cell-based assay system (cell chip) that can monitor the activity of major biochemical pathways through a reporter assay. Then, we applied the cell chip platform for the analysis of the HCC-associated genes discovered from transcriptome profiling, and found a number of cancer marker genes having a potential of modulating the activity of cancer-related biochemical pathways such as E2F, TCF, p53, Stat, Smad, AP-1, c-Myc, HIF and NF-kB. Some of these marker genes were previously blown to modulate these pathways, while most of the others not. Upon a fast-track phenotype analysis, a subset of the genes showed increased colony forming abilities in soft agar and altered cell morphology or adherence characteristics in the presence of purified matrix proteins. We are currently analyzing these selected marker genes in more detail for their effects on various biological Processes and for Possible clinical roles in liver cancer development.

  • PDF

The Prognostic Impact of Synchronous Ipsilateral Multiple Breast Cancer: Survival Outcomes according to the Eighth American Joint Committee on Cancer Staging and Molecular Subtype

  • Chu, Jinah;Bae, Hyunsik;Seo, Youjeong;Cho, Soo Youn;Kim, Seok-Hyung;Cho, Eun Yoon
    • Journal of Pathology and Translational Medicine
    • /
    • v.52 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • Background: In the current American Joint Committee on Cancer staging system of breast cancer, only tumor size determines T-category regardless of whether the tumor is single or multiple. This study evaluated if tumor multiplicity has prognostic value and can be used to subclassify breast cancer. Methods: We included 5,758 patients with invasive breast cancer who underwent surgery at Samsung Medical Center, Seoul, Korea, from 1995 to 2012. Results: Patients were divided into two groups according to multiplicity (single, n=4,744; multiple, n=1,014). Statistically significant differences in lymph node involvement and lymphatic invasion were found between the two groups (p<.001). Patients with multiple masses tended to have luminal A molecular subtype (p<.001). On Kaplan-Meier survival analysis, patients with multiple masses had significantly poorer disease-free survival (DFS) (p=.016). The prognostic significance of multiplicity was seen in patients with anatomic staging group I and prognostic staging group IA (p=.019 and p=.032, respectively). When targeting patients with T1-2 N0 M0, hormone receptor-positive, and human epidermal growth factor receptor 2 (HER2)-negative cancer, Kaplan-Meier survival analysis also revealed significantly reduced DFS with multiple cancer (p=.031). The multivariate analysis indicated that multiplicity was independently correlated with worse DFS (hazard ratio, 1.23; 95% confidence interval, 1.03 to 1.47; p=.025). The results of this study indicate that tumor multiplicity is frequently found in luminal A subtype, is associated with frequent lymph node metastasis, and is correlated with worse DFS. Conclusions: Tumor multiplicity has prognostic value and could be used to subclassify invasive breast cancer at early stages. Adjuvant chemotherapy would be necessary for multiple masses of T1-2 N0 M0, hormone-receptor-positive, and HER2-negative cancer.