• 제목/요약/키워드: cancer drug

검색결과 1,715건 처리시간 0.032초

Harmine의 Notch 신호전달 조절에 의한 유방암세포주 이동 및 침윤 억제 효과 (Inhibitory Effects of Harmine on Migration and Invasion of Human Breast Cancer Cells by Regulating Notch Signaling)

  • 윤지은
    • 생약학회지
    • /
    • 제49권4호
    • /
    • pp.285-290
    • /
    • 2018
  • Harmine, a beta-carboline alkaloid isolated from the seeds of Peganum harmala has been reported as a promising drug candidate for cancer therapy. However, the effect of harmine on breast cancer remains still unclear. In this study, the effect of harmine on the cell proliferation, migration, and invasion of breast cancer MDA-MB231 cells and the underlying mechanism were investigated. The results indicated that harmine inhibited the proliferation MDA-MB231 cells in a dose-dependent manner and markedly suppressed migration and invasion of MDA-MB231 cells. The mechanism involved in part through Notch signaling. The Notch activity was significantly inhibited by harmine treatment and harmine suppressed the expression of Jagged1 which is a key ligand to activate Notch signaling. These findings suggest a novel mechanism of harmine on anti-cancer activity and harmine may act as a potential therapeutic drug for breast cancer treatment.

Synthesis and Structure of Purine Derivatives as Antitumor Effects

  • Moharram, H.H.;El-Bayouki, Khairy A.M.;Haggag, B.;Basyouni, W.M.;Osman, A.M.
    • Archives of Pharmacal Research
    • /
    • 제12권2호
    • /
    • pp.138-142
    • /
    • 1989
  • The nucleophilic substitution reaction of 6-chloro purines (I) with malononitrile and ethyl cyanoacetate is carried out in DMSO and in the presence of an alkali. The possible tautomeric-ylidene form for the products is considered and discussed in view of IR, UV, NMR and mass spectral determinations. The derivatives were tested for their antitumor activities.

  • PDF

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

The effect of drug holiday before tooth extraction on the development of medication-related osteonecrosis of the jaw in cancer patients receiving intravenous bisphosphonates

  • Cigdem Karaca;Goknur Topaloglu-Yasan;Selen Adiloglu;Ecem Usman
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제49권2호
    • /
    • pp.68-74
    • /
    • 2023
  • Objectives: Drug holidays are suggested to reduce the formation of osteonecrosis in patients under intravenous (IV) bisphosphonates (BPs) therapy. The objectives of this study are to evaluate the incidence of medication-related osteonecrosis of the jaw (MRONJ) following tooth extraction in cancer patients using IV BP, and to assess the effect of drug holiday on the development of MRONJ. Patients and Methods: A manuel search of the patient folders of Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hacettepe University was undertaken to identify cancer patients who used IV BPs and had at least one tooth extraction between 2012 and 2022. Patents' age, sex, systemic condition, the type of BP used, duration of BP used, number of tooth extraction, duration of drug holiday, localization of tooth extraction and incidence of MRONJ were recorded. Results: One hundred nine teeth were removed from 57 jaws in 51 patients. All tooth extractions were performed under perioperative antibiotic prophylaxis and with primary wound closure. The incidence of MRONJ was 5.3%. Stage 1 MRONJ developed in 3 patients (only one had a drug holiday). The median duration of drug holiday was 2 months. No significant difference between the patients with and without a drug holiday and MRONJ development was found (P=0.315). The mean age of patients developed MRONJ was 40.33±8.08 years. A statistically significant difference was found between age and MRONJ development (P=0.002). Conclusion: The effect of a short-term drug holiday on the development of MRONJ may be limited because BPs remain in bone tissue for a long time. Drug holidays should be applied with the approval of an oncologist with other preventive measurements.

Curcumol Induces Apoptosis in SPC-A-1 Human Lung Adenocarcinoma Cells and Displays Anti-neoplastic Effects in Tumor Bearing Mice

  • Tang, Qi-Ling;Guo, Ji-Quan;Wang, Qi-You;Lin, Hai-Shu;Yang, Zhou-Ping;Peng, Tong;Pan, Xue-Diao;Liu, Bing;Wang, Su-Jun;Zang, Lin-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2307-2312
    • /
    • 2015
  • Curcumol is a sesquiterpene originally isolated from curcuma rhizomes, a component of herbal remedies commonly used in oriental medicine. Its beneficial pharmacological activities have attract significant interest recently. In this study, anti-cancer activity of curcumol was examined with both in vitro and in vivo models. It was found that curcumol exhibited time- and concentration-dependent anti-proliferative effects in SPC-A-1 human lung adenocarcinoma cells with cell cycle arrest in the G0/G1 phase while apoptosis-induction was also confirmed with flow cytometry and morphological analyses. Interestingly, curcumol did not display growth inhibition in MRC-5 human embryonic lung fibroblasts, suggesting the anti-proliferative effects of curcumol were specific to cancer cells. Anti-neoplastic effects of curcumol were also confirmed in tumor bearing mice. Curcumol (60 mg/ kg daily) significantly reduced tumor size without causing notable toxicity. In conclusion, curcumol appears a favorable anti-cancer candidate for further development.

Development of Polymeric Blend Microspheres from Chitosan-Hydroxypropylmethyl Cellulose for Controlled Release of an Anti-Cancer Drug

  • Reddy, Lakshmi C. Narayana;Reddy, Rama Subba P.;Rao, Krishna K.S.V.;Subha, M.C.S.;Rao, Chowdoji K.
    • 대한화학회지
    • /
    • 제57권4호
    • /
    • pp.439-446
    • /
    • 2013
  • Chitosan (CS) and hydroxypropylmethyl cellulose (HPMC) blend microspheres were prepared by water-in-oil emulsion technique and were loaded with an anti-cancer drug 5-fluorouracil (5-FU). CS-HPMC microspheres were characterized by Fourier transform infrared spectroscopy to confirm the cross-linking reaction. Scanning electron microscopy (SEM) was also used to assess the surface morphology of particles prepared. The quantity of release of 5-FU from the microspheres have been studied in terms of blend composition and amount of cross-linking agent. Differential scanning calorimetry and X-ray diffraction techniques indicated a uniform distribution of 5-FU particles in microspheres, whereas SEM suggested the spherical structure of the microspheres with slight rough surface. The in vitro drug release indicated that the particle size and release kinetics depend upon blend composition, amount of cross-linking agent used and amount of 5-FU present in the microspheres.

항암치료를 위한 겸형적혈구의 응용 (Application of sickle red blood cells for targeted cancer therapy)

  • 최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.715-717
    • /
    • 2016
  • 현재 암 환자들을 대상으로 하는 항암치료법은 나노입자, 폴리머 중합체, 지질, 리포솜 등을 치료 전달체로 이용하여 항암치료를 진행하는 방법들이 주로 활발하게 사용되고 있다. 이러한 전달체는 항암 치료제를 직접 암세포로 정확하게 표적 운반하는 정확성, 정확하게 운반한 후 선택적으로 항암 치료제를 방출해야하는 유출제어, 다른 일반 세포들을 약물로부터 안전하게 보호하는 기능 등을 동시에 가지고 있어야 하지만, 대부분 생산과정에서 많은 유해한 화학약품을 사용하며 이로 인한 독성을 유발하는 많은 사례가 빈번하게 발생하고 있다. 따라서 본 논문에서는 겸형 적혈구를 응용한 새로운 항암 전달체로서의 가능성을 타진하고 새로운 항암치료의 방법을 제시하고자 한다.

  • PDF

Serum miR-19a Predicts Resistance to FOLFOX Chemotherapy in Advanced Colorectal Cancer Cases

  • Chen, Qi;Xia, Hong-Wei;Ge, Xiao-Jun;Zhang, Yu-Chen;Tang, Qiu-Lin;Bi, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7421-7426
    • /
    • 2013
  • Background: Colorectal cancer is the fourth most common cancer worldwide and the second leading cause of cancer-related death. FOLFOX is the most common regimen used in the first-line chemotherapy in advanced colorectal cancer, but only half of the patients respond to this regimen and we have almost no clue in predicting resistance in such first-line application. Methods: To explore the potential molecular biomarkers predicting the resistance of FOLFOX regimen as the first-line treatment in advanced colorectal cancer, we screened microRNAs in serum samples from drug-responsive and drug-resistant patients by microarrays. Then differential microRNA expression was further validated in an independent population by reverse transcription and quantitative real-time PCR. Results: 62 microRNAs expressing differentially with fold-change >2 were screened out by microarray analysis. Among them, 5 (miR-221, miR-222, miR-122, miR-19a, miR-144) were chosen for further validation in an independent population (N=72). Our results indicated serum miR-19a to be significantly up-regulated in resistance-phase serum (p=0.009). The ROC curve analysis showed that the sensitivity of serum miR-19a to discriminate the resistant patients from the response ones was 66.7%, and the specificity was 63.9% when the AUC was 0.679. We additionally observed serum miR-19a had a complementary value for cancer embryonic antigen (CEA). Stratified analysis further revealed that serum miR-19a predicted both intrinsic and acquired drug resistance. Conclusions: Our findings confirmed aberrant expression of serum miR-19a in FOLFOX chemotherapy resistance patients, suggesting serum miR-19a could be a potential molecular biomarker for predicting and monitoring resistance to first-line FOLFOX chemotherapy regimens in advanced colorectal cancer patients.

Luteolin Inhibits Proliferation Induced by IGF-1 Pathway Dependent ERα in Human Breast Cancer MCF-7 Cells

  • Wang, Li-Meng;Xie, Kun-Peng;Huo, Hong-Nan;Shang, Fei;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1431-1437
    • /
    • 2012
  • The growth of many breast tumors is stimulated by IGF-1, which activates signal transduction pathways inducing cell proliferation. $ER{\alpha}$ is important in this process. The aim of the study was to investigate relationships in vitro among inhibitory effects of luteolin on the growth of MCF-7 cells, IGF-1 pathway and $ER{\alpha}$. Our results showed that luteolin could effectively block IGF-l-stimulated MCF-7 cell proliferation in a dose- and time-dependent manner and block cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub-G1DNA content. Luteolin markedly decreased IGF-l-dependent IGF-IR and Akt phosphorylation without affecting Erk1/2 phosphorylation. Further experiments pointed out that $ER{\alpha}$ was directly involved in IGF-l induced cell growth inhibitory effects of luteolin, which significantly decreased $ER{\alpha}$ expression. Knockdown of $ER{\alpha}$ in MCF-7 cells by an $ER{\alpha}$-specific siRNA decreased the IGF-l induced cell growth inhibitory effects of luteolin. $ER{\alpha}$ is thus a possible target of luteolin. These findings indicate that the inhibitory effect of luteolin on the growth of MCF-7 cells is via inhibiting IGF-l mediated PI3K-Akt pathway dependent of $ER{\alpha}$ expression.