• 제목/요약/키워드: cancer drug

검색결과 1,719건 처리시간 0.03초

CHEMOPREVENTION OF COLON AND MAMMARY CANCER BY THE KOREAN FOOD STUFFS

  • Kim, Dae-Joong;Byeongwoo Ahn;Kang, Jin-Seok;Nam, Ki-Taek;Park, Mina;Shin, Dong-Hwan;Jang, Dong-Deuk
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Effects of Edible Phytochemicals and Their Synthetic Derivatives on Carcinogenesis and Mutagenesis
    • /
    • pp.15-15
    • /
    • 2001
  • In the present study, we examined the chemopreventive effects of indole-3-carbinol (I3C), a constituent of cruciferous vegetables (the Family of Cruciferae) such as cabbages, cauliflowers and broccoli on multiple intestinal neoplasia (Min) genetic mouse model and on mouse colon carcinogenesis induced by azoxymethane (AOM) as well as on rat mammary carcinogenesis induced by 7, 12-dimethybenz[$\alpha$]anthracene (DMBA).(omitted)

  • PDF

CHEMOPREVENTION OF COLON AND MAMMARY CANCER BY THE KOREAN FOOD STUFFS

  • Kim, Dae-Joong;Byeongwoo Ahn;Kang, Jin-Seok;Nam, Ki-Taek;Park, Mina;Shin, Dong-Hwan;Jang, Dong-Deuk
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.58-58
    • /
    • 2001
  • In the present study, we examined the chemopreventive effects of indole-3-carbinol (I3C), a constituent of cruciferous vegetables (the Family of Cruciferae) such as cabbages, cauliflowers and broccoli on multiple intestinal neoplasia (Min) genetic mouse model and on mouse colon carcinogenesis induced by azoxymethane (AOM) as well as on rat mammary carcinogenesis induced by 7, 12-dimethybenz[$\alpha$]anthracene (DMBA).(omitted)

  • PDF

Clinical Application of the Adenosine Triphosphate-based Response Assay in Intravesical Chemotherapy for Superficial Bladder Cancer

  • Ge, Wen-Qing;Pu, Jin-Xian;Zheng, Shi-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.689-692
    • /
    • 2012
  • Objective: To investigate correlations between adenosine triphosphate chemotherapy response assay (ATP-CRA) and clinical outcomes after ATP-CRA-based chemotherapy for drug selection in patients receiving intravesical chemotherapy to prevent recurrence of superficial bladder cancer after surgery. Methods: The chemosensitivities of 12 anticancer drugs were evaluated, including 5-Fu ADM, and EPI, using ATP-CRA and primary tumor cell culture in 54 patients. In addition, a further 58 patients were treated according to clinical experience. Differences in post-chemotherapeutical effects between drug sensitivity assay and experience groups were compared. Results: The evaluable rate of the test was 96.3%, the clinical effective rate was 80.8%, the sensitivity rate was 97.6% (41/42), the specificity was 20%, the total predicting accuracy was 74.3%, the positive predictive value was 83.7% (41/49), the negative predictive value was 66.7% (2/3); in the drug sensitivity test group, the clinical effective rate was 80.8%, the experience group response rate was 63.8%, with a significant difference in clinical effects between the ATP-based sensitivity and experience groups (${\chi}^2$=7.0153, P<0.01). Conclusion: ATP-CRA is a stable, accurate and potentially practical chemosensitivity test providing a predictor of chemotherapeutic response in patients with superficial bladder cancer.

Urushiol V Suppresses Cell Proliferation and Enhances Antitumor Activity of 5-FU in Human Colon Cancer Cells by Downregulating FoxM1

  • Jeong, Ji Hye;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.257-264
    • /
    • 2022
  • Colorectal cancer (CRC) is one of the most common malignant tumor. 5-FU is commonly used for the treatment of CRC. However, the development of drug resistance in tumor chemotherapy can seriously reduce therapeutic efficacy of 5-FU. Recent data show that FoxM1 is associated with 5-FU resistance in CRC. FoxM1 plays a critical role in the carcinogenesis and drug resistance of several malignancies. It has been reported that urushiol V isolated from the cortex of Rhus verniciflua Stokes is cytotoxic to several types of cancer cells. However, the underlying molecular mechanisms for its antitumor activity and its potential to attenuate the chemotherapeutic resistance in CRC cells remain unknown. Here, we found that urushiol V could inhibit the cell proliferation and induced S-phase arrest of SW480 colon cancer cells. It inhibited protein expression level of FoxM1 through activation of AMPK. We also investigated the combined effect of urushiol V and 5-FU. The combination treatment reduced FoxM1 expression and consequently reduced cell growth and colony formation in 5-FU resistant colon cancer cells (SW480/5-FUR). Taken together, these result suggest that urushiol V from Rhus verniciflua Stokes can suppress cell proliferation by inhibiting FoxM1 and enhance the antitumor capacity of 5-FU. Therefore, urushiol V may be a potential bioactive compound for CRC therapy.

Shedding; towards a new paradigm of syndecan function in cancer

  • Choi, So-Joong;Lee, Ha-Won;Choi, Jung-Ran;Oh, Eok-Soo
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.305-310
    • /
    • 2010
  • Syndecans, cell surface heparansulfate proteoglycans, have been proposed to act as cell surface receptors and/or coreceptors to play critical roles in multiple cellular functions. However, recent reports suggest that the function of syndecans can be further extended through shedding, a cleavage of extracellular domain. Shedding constitutes an additional level for controlling the function of syndecans, providing a means to attenuate and/or regulate amplitude and duration of syndecan signals by modulating the activity of syndecans as cell surface receptors. Whether these remaining cleavage products are still capable of functioning as cell surface receptors to efficiently transduce signals inside of cells is not clear. However, shedding transforms cell surface receptor syndecans into soluble forms, which, like growth factors, may act as novel ligands to induce cellular responses by association with other cell surface receptors. It is becoming interestingly evident that shed syndecans also contribute significantly to syndecan functions in cancer biology. This review presents current knowledge about syndecan shedding and its functional significance, particularly in the context of cancer.

Involvement of NRF2 Signaling in Doxorubicin Resistance of Cancer Stem Cell-Enriched Colonospheres

  • Ryoo, In-geun;Kim, Geon;Choi, Bo-hyun;Lee, Sang-hwan;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.482-488
    • /
    • 2016
  • Cancer stem cells (CSCs) are a subset of tumor cells, which are characterized by resistance against chemotherapy and environmental stress, and are known to cause tumor relapse after therapy. A number of molecular mechanisms underlie the chemoresistance of CSCs, including high expression levels of drug efflux transporters. We investigated the role of the antioxidant transcription factor NF-E2-related factor 2 (NRF2) in chemoresistance development, using a CSC-enriched colonosphere system. HCT116 colonospheres were more resistant to doxorubicin-induced cell death and expressed higher levels of drug efflux transporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) compared to HCT116 monolayers. Notably, levels of NRF2 and expression of its target genes were substantially elevated in colonospheres, and these increases were linked to doxorubicin resistance. When NRF2 expression was silenced in colonospheres, Pgp and BCRP expression was downregulated, and doxorubicin resistance was diminished. Collectively, these results indicate that NRF2 activation contributes to chemoresistance acquisition in CSC-enriched colonospheres through the upregulation of drug efflux transporters.

비소세포폐암 환자에 있어서 Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors의 약효 및 rash 발생과 관련한 인자에 대한 연구 (Factors associated with effectiveness of and rash occurrence by Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in patients with non-small cell lung cancer)

  • 배나래;최혜진;이병구;곽혜선
    • 한국임상약학회지
    • /
    • 제18권2호
    • /
    • pp.75-83
    • /
    • 2008
  • Purpose: Currently lung cancer ranks second in cancer for incidence rate and is a disease that ranks first for a death rate by cancerous growth because it is already advanced at the time of diagnosis. The purpose of this paper was to analyze the factors that affect the effectiveness of and rash occurrence by Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR TKI) in patients with non-small cell lung cancer. Methods: A retrospective chart review of 100 patients, who took EGFR TKI (erlotinib, gefitinib) among patients who were diagnosed with non-small cell lung cancer in a Hospital in Korea between May 2005 and February 2008, was conducted. The drug effectiveness was evaluated by Response Evaluation Criteria In Solid Tumor. Results: EGFR mutation was the only factor associated with drug response (complete response and partial response). When stable disease was added to drug response as the evaluation parameter, ECOG and rash as well as EGFR mutation were found to be important factors. Survival, however, was not affected by EGFR mutation. The factors influenced on survival were older age (${\geq}65$), low ECOG ($1{\sim}2$), adenocarcinoma and rash. In the case of rash, group with EGFR mutation or low ECOG showed significantly higher chance of occurrence. There was no significant difference in rash occurrence between gefitinib and erlotinib groups. Conclusions: Based on the results, EGFR mutation positive and low ECOG ($1{\sim}2$) were significantly important factors for both effectiveness of EGFR TKI and rash occurrence. Also, rash itself was found to be an independently significant factor for the disease control and survival. Therefore, while administering EGFR TKI, patients who have the factors associated with rash occurrence should be closely monitored for effective and safe drug therapy.

  • PDF

Mechanism of Fatty Acid Synthase in Drug Tolerance Related to Epithelial-mesenchymal Transition of Breast Cancer

  • Li, Jun-Qin;Xue, Hui;Zhou, Lan;Dong, Li-Hua;Wei, Da-Peng;Li, Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7617-7623
    • /
    • 2014
  • Objective: The mechanism of action of fatty acid synthase (FASN) in drug tolerance of breast cancer cells with epithelial-mesenchymal transition (EMT) features was investigated. Methods: The breast cancer cell line MCF-7-MEK5 with stably occurring EMT and tumour necrosis factor-${\alpha}$ (TNF-${\alpha}$) tolerance was used as the experimental model, whereas MCF-7 acted as the control. Tumour cells were implanted into nude mice for in vivo analysis, and cerulenin was used as a FASN inhibitor. RT-PCR, real-time quantitative PCR and Western blot were employed to detect the expression of FASN, TNFR-1, TNFR-2, Wnt-1, ${\beta}$-catenin and cytC at the RNA and protein levels. Results: Compared with MCF-7, TNFR-1 expression in MCF-7-MEK5 was slightly changed, TNFR-2 was decreased, and FASN, Wnt-1, ${\beta}$-catenin and cytC were increased. The expression of Wnt-1 and ${\beta}$-catenin in MCF-7-MEK5 decreased after cerulenin treatment, whereas cytC expression increased. Conclusions: The important function of FASN in the drug tolerance of breast cancer may be due to the following mechanisms: FASN downregulated TNFR-2 expression through lipid rafts to make the cells less sensitive to TNF-${\alpha}$, and simultaneously activated the Wnt-$1/{\beta}$-catenin signalling pathway. Thus, cytC expression increased, which provided cells with anti-apoptotic capacity and induced drug tolerance.

Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells

  • Bakhshaiesh, Tayebeh Oghabi;Armat, Marzie;Shanehbandi, Dariush;Sharifi, Simin;Baradaran, Behzad;Hejazi, Mohammad Saeed;Samadi, Nasser
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5191-5197
    • /
    • 2015
  • A partial response or resistance to chemotherapeutic agents is considered as a main obstacle in treatment of patients with cancer, including breast cancer. Refining taxane-based treatment procedures using adjuvant or combination treatment is a novel strategy to increase the efficiency of chemotherapy. PPM1D is a molecule activated by reactive oxygen species. whose expression is reported to modulate the recruitment of DNA repair molecules. In this study we examined the impact of arsenic trioxide on efficacy of paclitaxel-induced apoptosis in paclitaxel-resistant MCF-7 cells. We also investigated the expression of PPM1D and TP53 genes in response to this combination treatment. Resistant cells were developed from the parent MCF-7 cell line by applying increasing concentrations of paclitaxel. MTT assays were applied to determine the rate of cell survival. DAPI staining using fluorescent microscopy was employed to study apoptotic bodies. Real-time RT-PCR analysis was also applied to determine PPM1D mRNA levels. Our results revealed that combination of arsenic trioxide and paclitaxel elevates the efficacy of the latter in induction of apoptosis in MCF-7/PAC resistant cells. Applying arsenic trioxide also caused significant decreases in PPM1D mRNA levels (p<0.05). Our findings suggest that arsenic trioxide increases paclitaxel-induced apoptosis by down regulation of PPM1D expression. PPM1D dependent signaling can be considered as a novel target to improve the efficacy of chemotherapeutic agents in resistant breast cancer cells.