Kim, Jin Hwan;van Beek JR, Edwin;Murchison, John T;Marin, Aleksander;Mirsadraee, Saeed
Tuberculosis and Respiratory Diseases
/
v.78
no.3
/
pp.180-189
/
2015
Accurate lymph node staging of lung cancer is crucial in determining optimal treatment plans and predicting patient outcome. Currently used lymph node maps have been reconciled to the internationally accepted International Association for the Study of Lung Cancer (IASLC) map published in the seventh edition of TNM classification system of malignant tumours. This article provides computed tomographic illustrations of the IASLC nodal map, to facilitate its application in day-to-day clinical practice in order to increase the appropriate classification in lung cancer staging.
Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
Asian Pacific Journal of Cancer Prevention
/
v.15
no.24
/
pp.10573-10576
/
2015
Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.
From May 1986 to May 1992, 72 patients were diagnosed and operated for primary lung cancer, among them 65 patients were clinically evaluated at the department of Thoracic & Cardiovascular Surgery, Masan Koryo General Hospital. 1. There were 52 males 13 females[M:F=4:1], and 5th, 6th decade of life[72%] was peak incidence. 2. The preoperative diagnosis and its positive rate were sputum cytology 35%, bronchoscopy 47%, pleural effusion cytology 80%, and pleural biopsy 50%. 3. The classification histologic types were squamous cell cancer 71%, adenocarcinoma 17%, undifferentiated cell carcinoma 4.6%, and staging classification were Stage I 31%, Stage II 22%, Stage IIIa 26%, and Stage IIIb 20%. 4. The operative methods were lobectomy 52%, pneumonectomy 36%, and open biopsy 12%, and operability was 89%, resectability was 88%. 5. The postoperative complications developed 13 patients[22%], and operative mortality was 5%. 6. The overall actuarial survival rate was 1year 70%, 2year 42%, 3year 32%, 4year 26%, and 5year 22%, according to Stage 5year survival rate was Stage I 37%, Stage II 22%, Stage IIIa 3year 12%, Stage IIIb 2year 23%. And according to operative method lobectomy 23%, pneumonectomy 19%.
Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.
Kim, Miin-Woo;Bae, Jin-Hee;Wang, Bo-Hyun;Lim, Joon-Shik
Journal of Digital Convergence
/
v.19
no.12
/
pp.347-352
/
2021
In this paper, we propose a method for finding feature subsets that are effective for classification in an input dataset by using a multi-agent reinforcement learning method. In the field of machine learning, it is crucial to find features suitable for classification. A dataset may have numerous features; while some features may be effective for classification or prediction, others may have little or rather negative effects on results. In machine learning problems, feature selection for increasing classification or prediction accuracy is a critical problem. To solve this problem, we proposed a feature selection method based on reinforced learning. Each feature has one agent, which determines whether the feature is selected. After obtaining corresponding rewards for each feature that is selected, but not by the agents, the Q-value of each agent is updated by comparing the rewards. The reward comparison of the two subsets helps agents determine whether their actions were right. These processes are performed as many times as the number of episodes, and finally, features are selected. As a result of applying this method to the Wisconsin Breast Cancer, Spambase, Musk, and Colon Cancer datasets, accuracy improvements of 0.0385, 0.0904, 0.1252 and 0.2055 were shown, respectively, and finally, classification accuracies of 0.9789, 0.9311, 0.9691 and 0.9474 were achieved, respectively. It was proved that our proposed method could properly select features that were effective for classification and increase classification accuracy.
International Journal of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.231-243
/
2021
In Recent years the way we analyze the breast cancer has changed dramatically. Breast cancer is the most common and complex disease diagnosed among women. There are several subtypes of breast cancer and many options are there for the treatment. The most important is to educate the patients. As the research continues to expand, the understanding of the disease and its current treatments types, the researchers are constantly being updated with new researching techniques. Breast cancer survival rates have been increased with the use of new advanced treatments, largely due to the factors such as earlier detection, a new personalized approach to treatment and a better understanding of the disease. Many machine learning classification models have been adopted and modified to diagnose the breast cancer disease. In order to enhance the performance of classification model, our research proposes a model using A Hybrid Modified K-Means Clustering with Modified SVM (Support Vector Machine) Machine learning algorithm to create a new method which can highly improve the performance and prediction. The proposed Machine Learning model is to improve the performance of machine learning classifier. The Proposed Model rectifies the irregularity in the dataset and they can create a new high quality dataset with high accuracy performance and prediction. The recognized datasets Wisconsin Diagnostic Breast Cancer (WDBC) Dataset have been used to perform our research. Using the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, We have created our Model that can help to diagnose the patients and predict the probability of the breast cancer. A few machine learning classifiers will be explored in this research and compared with our Proposed Model "A Hybrid Modified K-Means with Modified SVM Machine Learning Algorithm to Enhance the Cancer Prediction" to implement and evaluated. Our research results show that our Proposed Model has a significant performance compared to other previous research and with high accuracy level of 99% which will enhance the Cancer Prediction.
Breast cancer remains the second leading cause of cancer death among woman, worldwide, despite advances in identifying novel targeted therapies and the development of treating strategies. Classification of clinical subtypes (ER+, PR+, HER2+, and TNBC (Triple-negative)) increases the complexity of breast cancers, which thus necessitates further investigation. Mouse models used in breast cancer research provide an essential approach to examine the mechanisms and genetic pathway in cancer progression and metastasis and to develop and evaluate clinical therapeutics. In this review, we summarize tumor transplantation models and genetically engineered mouse models (GEMMs) of breast cancer and their applications in the field of human breast cancer research and anti-cancer drug development. These models may help to improve the knowledge of underlying mechanisms and genetic pathways, as well as creating approaches for modeling clinical tumor subtypes, and developing innovative cancer therapy.
Kim, Ki-Sung;Song, Hye-Jung;Shin, Won-Sub;Song, Kang-Won
Korean Journal of Clinical Laboratory Science
/
v.43
no.2
/
pp.48-56
/
2011
Gastrointestinal stromal tumor (GIST) is a mesenchymal tumor and is associated with a specific immunophenotype index. It is very important to identify the specific immunophenotype and the diagnosis for the treatment GIST patients. Ninety two cases of GIST analyzed in this study were immuno-stained for c-kit, DOG1, CD34, PKC-${\theta}$, PDGFR-${\alpha}$. The rate of positive staining and statistical significance were then compared. In addition, the GISTs were analyzed as followings: very low risk, low risk, intermediate risk and high risk according to tumor size and nuclear division, and later correlated with clinical parameters. The results of the GIST positive stainings were: DOG1 (95.7%), PKC-${\theta}$ (90.2%), PDGFR-${\alpha}$ (88.0%), c-kit (87.0%) and CD34 (71.7%). Only DOG1 staining showed a statistical significance of p<0.05. It was identified in the classification system of histologic risk that staining expression of DOG1, PKC-${\theta}$, PDGFR-${\alpha}$ were significantly increased as histologic risk increases (p<0.05). However, clinical parameters such as age and sex of patients have no correlations with the classification system of histologic risk (p>0.05). Therefore, in this study, the expression of DOG1 showed statistical significance and DOG1, PKC-${\theta}$, PDGFR-${\alpha}$ staining increased significantly as the histologic risk increases in histologic classification system. Taken together, the DOG1 staining should be very effective for the diagnosis of GIST patients.
Purpose: The 7th AJCC tumor node metastasis (TNM) staging system modified the classification of the lymph node metastasis widely compared to the 6th edition. To evaluate the prognostic predictability of the new TNM staging system, we analyzed the survival rate of the gastric cancer patients assessed by the 7th staging system. Materials and Methods: Among 2,083 patients who underwent resection for gastric cancer at the department of surgery, Hanyang Medical Center from July 1992 to December 2009, This study retrospectively reviewed 5-year survival rate (5YSR) of 624 patients (TanyN3M0: 464 patients, TanyNanyM1: 160 patients) focusing on the number of metastatic lymph node and distant metastasis. We evaluated the applicability of the new staging system. Results: There were no significant differences in 5YSR between stage IIIC with more than 29 metastatic lymph nodes and stage IV (P=0.053). No significant differences were observed between stage IIIB with more than 28 metastatic lymph nodes and stage IV (P=0.093). Distinct survival differences were present between patients who were categorized as TanyN3M0 with 7 to 32 metastatic lymph nodes and stage IV. But patients with more than 33 metastatic lymph nodes did not show any significant differences compared to stage IV (P=0.055). Among patients with TanyN3M0, statistical significances were seen between patients with 7 to 30 metastatic lymph nodes and those with more than 31 metastatic lymph nodes. Conclusions: In the new staging system, modifications of N classification is mandatory to improve prognostic prediction. Further study involving a greater number of cases is required to demonstrate the most appropriate cutoffs for N classification.
Atish Darshan Bajracharya;Suniti Shrestha;Hyung Sun Kim;Ji Hae Nahm;Kwanhoon Park;Joon Seong Park
Annals of Hepato-Biliary-Pancreatic Surgery
/
v.27
no.3
/
pp.251-257
/
2023
Backgrounds/Aims: This is a retrospective analysis of whether the 8th edition American Joint Committee on Cancer (AJCC) was a significant improvement over the 7th AJCC distal extrahepatic cholangiocarcinoma classification. Methods: In total, 111 patients who underwent curative resection of mid-distal bile duct cancer from 2002 to 2019 were included. Cases were re-classified into 7th and 8th AJCC as well as clinicopathological univariate and multivariate, and Kaplan-Meier survival curve and log rank were calculated using R software. Results: In patient characteristics, pancreaticoduodenectomy/pylorus preserving pancreaticoduodenectomy had better survival than segmental resection. Only lymphovascular invasion was found to be significant (hazard ratio 2.01, p = 0.039) among all clinicopathological variables. The 8th edition AJCC Kaplan Meier survival curve showed an inability to properly segregate stage I and IIA, while there was a large difference in survival probability between IIA and IIB. Conclusions: The 8th distal AJCC classification did resolve the anatomical issue with the T stage, as T1 and T3 showed improvement over the 7th AJCC, and the N stage division of the N1 and N2 category was found to be justified, with poorer survival in N2 than N1. Meanwhile, in TMN staging, the 8th AJCC was able differentiate between early stage (I and IIA) and late stage (IIB and III) to better explain the patient prognosis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.