• Title/Summary/Keyword: can materials

Search Result 21,136, Processing Time 0.056 seconds

Evaluation on the Properties of Mortar using Waste Shells for Partical Replacement of Fine Aggregate (패각류를 잔골재 대체재로 사용한 모르터의 기초물성 평가)

  • Kim, Ji-Hyun;Cho, Kwang-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.148-149
    • /
    • 2013
  • Recently, the construction industry in South Korea, has experienced many difficulties in lack of supply with construction materials. Since waste shells can be possibly used as replacement materials of fine aggregate, the successful application can resolve, to some extent at least, the economic problems and environmental problems. In this research, the basic physical properties of the mortar which was used as fine aggregate substitute (clam, cockle, manila clam, oyster) were evaluated. According to the experimental results, the absorption rate and compressive strength of samples with various shells were equivalent to that of plain mortar. The mortar which replaced 25% of oyster shell with sand showed approximately 30% lower compressive strength and twice as much absorption as plain mortar. It was found that waste shells can be used as replacement materials of fine aggregate, but the oyster shell requires further experimental works in order for its successful application.

  • PDF

Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application (이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용)

  • Lee, Sang-Hyun;Park, Tae-Joon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.409-420
    • /
    • 2010
  • Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applications such as tissue engineering, regenerative medicine, drug-delivery systems, and biosensors, because of their inherent biocompatibility and biodegradability. However, the insolubility of unmodified biopolymers in most organic solvents has limited the applications of biopolymer-based materials and composites. Ionic liquids (ILs) are good solvents for polar organic, nonpolar organic, inorganic and polymeric compounds. Biopolymers such as cellulose, chitin/chitiosan, silk, and DNA can be fabricated from ILs into films, membranes, fibers, spheres, and molded shapes. Various biopolymer/biopolymer and biopolymer/synthetic polymer composites also can be prepared by co-dissolution of polymers into IL mixtures. Heparin/biopolymer composites are especially of interest in preparing materials with enhanced blood compatibility.

Sewing-enabled electric button for smart fabric

  • Lee, Kang-Ho;Lee, Dongkyu;Lee, Yong-Goo;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.67-70
    • /
    • 2021
  • A new button-shaped electrical device was developed for a smart fabric. This electric button can be sewn anywhere on the garment, similar to a traditional button fastener. t not only performs a decorative function but also makes the fabric suitable for use in Internet of Things (IoT) applications. It has metallic through-holes such that it can be fastened onto a fabric by conductive sewing threads. When threaded through metallic holes, the button can communicate with the external device by transmitting and receiving data. In addition, it adds specific functions by stacking a detachable application layer on the base layer. It is robust to frequent washing, and thus has excellent repeatability for use as an IoT device. The feasibility of the electric button was successfully demonstrated by its ability to identify the physical activities of walking and running, monitoring ambient temperature, and turning on LED lights.

DOMAIN WALL DYNAMICS AND EQUIVALENT CIRCUTTS IN FERROMAGNETIC MATERIALS

  • Valinzuela, R.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.8-8
    • /
    • 1992
  • The study of magnetic properties of ferro and ferri-magnetic materials has shown that, due to their different time constants, magnetisation mechanisms (domain wall displacement, spin rotation and wall bulging) can be separated by using the complex permeability formalisms, they exhibit characteristic features in $\mu$′ versus $\mu$" plots. In many cases. the elements (inductances, resistances and capacitances) of the equivalent circuit representing the friquency behaviour, can also be associated with physical parameters of the sample [1-3]. In a different approach, domain wall dynamics can be represented by a motion equation with mass, damping and restoring force terms [4]. In this paper, we show that these two approaches are consistent and how they are related.

  • PDF

Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature (모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막)

  • You, Younggoon;Jeong, Jinyong;Joo, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

Texture Analysis of Directionally-Solidified Si Films Obtained via Line-Scan SLS

  • Chitu, A.M.;Wilt, P.C. Van Der;Chung, U.J.;Turk, B.A.;McCreary, V.M.;Limanov, A.B.;Im, James S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.763-767
    • /
    • 2006
  • Directionally solidified Si films obtained via line-scan SLS can lead to attainment of high-mobility TFTs. The crystallographic texture of the resultant materials can potentially be an important factor because the spatial details thereof may impact the overall device uniformity. Here, we present EBSD analysis of these materials that reveal the existence of relatively large domains with different textures and differing amounts of defects, which in turn, may adversely affect device uniformity.

  • PDF

Research Trend and Product Development Potential of Fungal Mycelium-based Composite Materials (곰팡이 균사체 기반 복합소재의 연구 동향과 제품 개발 가능성)

  • Kim, Da-Song;Kim, Yong-Woon;Kim, Kil-Ja;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.174-178
    • /
    • 2017
  • Fungal mycelium-based composite materials (FMBC) are a new biomaterial to replace the existing composite materials. To compete with lightweight, high-performance composite materials represented by fiber-reinforced plastic (FRP), various physical and chemical properties and functionality must be secured. Especially, the composite materials made by using mycelium of mushroom is called mushroom plastic. Currently, Ecovative, Grado Zero Espace and MycoWorks in USA and Europe are launching new products. Products utilizing FMBC can be launched in the market for construction materials, automobile interior materials and artificial leather substitutes. In spite of this high possibility, mass production using FMBC has not yet been reported. This review introduces the FMBC, a material that can replace existing plastics, inorganic building materials and animal skins in an environmentally and economically viable way, and looks at the possibility of future biomaterials by summarizing recent research contents.

A Study on Combustion Test of Kitchen Interior Materials (주방 인테리어 재료의 연소시험에 관한 연구)

  • Sung, Jae-Up;Kim, Sa-Ick
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.261-270
    • /
    • 2012
  • Nowadays, kitchen are not for the housewives who were independent themselves in the past but for the functional spaces. Kitchen spaces are not only the main function in the residence but also changing spaces which provide the mutual understanding communication between the family members. Although the primary function of the kitchen is food preparation, it is commonly a gathering spot for family and friends, especially if it includes an informal eating area. With so much time spent in the kitchen, and can easily become tired do the decorating scheme. But, for fear of high remodeling costs, it is often unchanged for many years. Surprisingly, there are many changes that can de made to the decorating scheme of a kitchen without either the expense or the inconvenience of remodeling. Between materials on the market, materials for kitchen interior were chosen for this study. Following results came from the materials after combustion. Among boards, MDF showed the highest score in these four categories; residual inflame time, residual glow time, carbonization length, carbonization area. Also, among finishing materials (interior materials), MDF + Poly Coating showed the highest score in those categories. Therefore, it seemed that interior materials need flame retardancy.

  • PDF

A study on the strategy of Daegu.Kyungbuk Dental materials industrial specialization (대구.경북 치재 산업 특화 전략에 관한 연구)

  • Kim, Jeoung-Sook;Kim, Hung-Deuk;Pack, Jung-Rim
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.155-171
    • /
    • 2005
  • The market of dental materials industry in Korea will over 10 bilians $. If think concern of world market, we can know the possibility of market growth. In Korea, the technique of dental materials industry is low status. Then, special items income advanced countries. But advanced countries had been developed dental materials industry into high beneficial. Otherwise, Daegu Kyungbuk have several good points in dental materials industry. 1st, national dentisty university and three dental lab. college supplies abilitable human resources. 2nd, the possibility of support on basic industrial technology. Finally, the possibility of selection & attraction from many dental company. Then if Daegu Kyungbuk would be select & supported of dental materials Industrial special region, it can be think that will empower local economy, further national constitutional power. So we propose following three points, 1st. the deeper study on righteous of Daegu Kyungbuk dental materials industrial specialization. 2nd. investment on R & D of the region dental materials industrial. final, the support of venture circle.

  • PDF

Enhancement of Thermoelectric Performance in Spark Plasma Sintered p-Type Bi0.5Sb1.5Te3.0 Compound via Hot Isostatic Pressing (HIP) Induced Reduction of Lattice Thermal Conductivity (열간등방가압 공정을 통한 P형 Bi0.5Sb1.5Te3.0 소결체의 격자 열전도도 감소 및 열전 특성 향상)

  • Soo-Ho Jung;Ye Jin Woo;Kyung Tae Kim;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.123-129
    • /
    • 2023
  • High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100℃. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.