• Title/Summary/Keyword: camera vision

Search Result 1,386, Processing Time 0.022 seconds

Controlling robot by image-based visual servoing with stereo cameras

  • Fan, Jun-Min;Won, Sang-Chul
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.229-232
    • /
    • 2005
  • In this paper, an image-based "approach-align -grasp" visual servo control design is proposed for the problem of object grasping, which is based on the binocular stand-alone system. The basic idea consists of considering a vision system as a specific sensor dedicated a task and included in a control servo loop, and we perform automatic grasping follows the classical approach of splitting the task into preparation and execution stages. During the execution stage, once the image-based control modeling is established, the control task can be performed automatically. The proposed visual servoing control scheme ensures the convergence of the image-features to desired trajectories by using the Jacobian matrix, which is proved by the Lyapunov stability theory. And we also stress the importance of projective invariant object/gripper alignment. The alignment between two solids in 3-D projective space can be represented with view-invariant, more precisely; it can be easily mapped into an image set-point without any knowledge about the camera parameters. The main feature of this method is that the accuracy associated with the task to be performed is not affected by discrepancies between the Euclidean setups at preparation and at task execution stages. Then according to the projective alignment, the set point can be computed. The robot gripper will move to the desired position with the image-based control law. In this paper we adopt a constant Jacobian online. Such method describe herein integrate vision system, robotics and automatic control to achieve its goal, it overcomes disadvantages of discrepancies between the different Euclidean setups and proposes control law in binocular-stand vision case. The experimental simulation shows that such image-based approach is effective in performing the precise alignment between the robot end-effector and the object.

  • PDF

Development of Real-Time Vision-based Eye-tracker System for Head Mounted Display (영상정보를 이용한 HMD용 실시간 아이트랙커 시스템)

  • Roh, Eun-Jung;Hong, Jin-Sung;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.539-547
    • /
    • 2007
  • In this paper, development and tests of a real-time eye-tracker system are discussed. The tracker system tracks a user's gaze point through movement of eyes by means of vision-based pupil detection. The vision-based method has an advantage of detecting the exact positions of user's eyes. An infrared camera and a LED are used to acquire a user's pupil image and to extract pupil region, which was hard to extract with software only, from the obtained image, respectively. We develop a pupil-tracking algorithm with Kalman filter and grab the pupil images by using DSP(Digital Signal Processing) system for real-time image processing technique. The real-time eye-tracker system tracks the movements of user's pupils to project their gaze point onto a background image.

Neuro-Net Based Automatic Sorting And Grading of A Mushroom (Lentinus Edodes L)

  • Hwang, H.;Lee, C.H.;Han, J.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1243-1253
    • /
    • 1993
  • Visual features of a mushroom(Lentinus Edodes L) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading looks simple, a decision making undereath the simple action comes form the results of the complex neural processing of the visual image. And processing details involved in the visual recognition of the human brain has not been fully investigated yet. Recently, however, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, a research of the neuro-net based human like information processing toward the agricultural product and processing are widely open and promising. In this pape , neuro-net based grading and sorting system was developed for a mushroom . A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features and their corresponding grades were used as input/output pairs for training the neural network and the trained results of the network were presented . The computer vision system used is composed of the IBM PC compatible 386DX, ITEX PFG frame grabber, B/W CCD camera , VGA color graphic monitor , and image output RGB monitor.

  • PDF

On-site Performance Evaluation of a Vision-based Displacement Measurement System (영상 기반 변위 계측장치의 현장 적용 성능 평가)

  • Cho, Soojin;Sim, Sung-Han;Kim, Eunsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5854-5860
    • /
    • 2014
  • The on-site performance of a vision-based displacement measurement system (VDMS) was evaluated through a field test on a bridge. The VDMS used in this study is composed of a camera, a marker, a frame grabber, and a laptop. The system measures the displacement by attaching a marker at the location to be measured on the structure, by capturing images of that marker with a fixed rate, and by processing a series of images using a planar homography technique. The developed system was first validated from a laboratory test using a small-scale building structure. The VDMS was then employed in a field test on a railroad bridge with a KTX train running under various conditions. The on-site performance was evaluated by comparing the obtained displacement using the VDMS with the displacement measured from a laser Doppler vibrometer (LDV), which is an expensive and accurate displacement measurement device.

Design of Smart Device Assistive Emergency WayFinder Using Vision Based Emergency Exit Sign Detection

  • Lee, Minwoo;Mariappan, Vinayagam;Mfitumukiza, Joseph;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2017
  • In this paper, we present Emergency exit signs are installed to provide escape routes or ways in buildings like shopping malls, hospitals, industry, and government complex, etc. and various other places for safety purpose to aid people to escape easily during emergency situations. In case of an emergency situation like smoke, fire, bad lightings and crowded stamped condition at emergency situations, it's difficult for people to recognize the emergency exit signs and emergency doors to exit from the emergency building areas. This paper propose an automatic emergency exit sing recognition to find exit direction using a smart device. The proposed approach aims to develop an computer vision based smart phone application to detect emergency exit signs using the smart device camera and guide the direction to escape in the visible and audible output format. In this research, a CAMShift object tracking approach is used to detect the emergency exit sign and the direction information extracted using template matching method. The direction information of the exit sign is stored in a text format and then using text-to-speech the text synthesized to audible acoustic signal. The synthesized acoustic signal render on smart device speaker as an escape guide information to the user. This research result is analyzed and concluded from the views of visual elements selecting, EXIT appearance design and EXIT's placement in the building, which is very valuable and can be commonly referred in wayfinder system.

Development of Inspection System for Surface of a Shock Absorber Rod using Machine vision (머신비전을 이용한 업쇼버 로드의 표면검사 시스템 개발)

  • Kim, Seong-Jin;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3416-3422
    • /
    • 2014
  • A shock absorber rod is located in the center of the absorber piston and is responsible for the reciprocating movement portion. If it has surface defects, the damping performance of product will be adversely affected. A rod surface has gloss by heat treatment. Therefore, it is difficult to find a defect, such as dust, imprints, and blowholes. Because a total inspection is achieved by visual inspection by workers, it causes eyestrain and the quality of the product is not constant. In this paper, a machine vision system was developed to find a defect using a line-scan camera. The machine can detect surface defects than 0.3mm. To minimize the occurrence probability of defects on the inspection process, the developed auto inspection system had an automatic feeding system and incorporated a protection system. Through the development of this system, which relies on the operator's visual inspection of the surface of the shock absorber, the Rod inspection system constructed quality inspection standards and standardized tests to ensure improved reliability.

Road Image Enhancement Method for Vision-based Intelligent Vehicle (비전기반 지능형 자동차를 위한 도로 주행 영상 개선 방법)

  • Kim, Seunggyu;Park, Daeyong;Choi, Yeongwoo
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.1
    • /
    • pp.51-71
    • /
    • 2014
  • This paper presents an image enhancement method in real road traffic scenes. The images captured by the camera on the car cannot keep the color constancy as illumination or weather changes. In the real environment, these problems are more worse at back light conditions and at night that make more difficult to the applications of the vision-based intelligent vehicles. Using the existing image enhancement methods without considering the position and intensity of the light source and their geometric relations the image quality can even be deteriorated. Thus, this paper presents a fast and effective method for image enhancement resembling human cognitive system which consists of 1) image preprocessing, 2) color-contrast evaluation, 3) alpha blending of over/under estimated image and preprocessed image. An input image is first preprocessed by gamma correction, and then enhanced by an Automatic Color Enhancement(ACE) method. Finally, the preprocessed image and the ACE image are blended to improve image visibility. The proposed method shows drastically enhanced results visually, and improves the performance in traffic sign detection of the vision based intelligent vehicle applications.

Attitudes Estimation for the Vision-based UAV using Optical Flow (광류를 이용한 영상기반 무인항공기의 자세 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.342-351
    • /
    • 2010
  • UAV (Unmanned Aerial Vehicle) have an INS(Inertial Navigation System) equipment and also have an electro-optical Equipment for mission. This paper proposes the vision based attitude estimation algorithm using Kalman Filter and Optical flow for UAV. Optical flow is acquired from the movie of camera which is equipped on UAV and UAV's attitude is measured from optical flow. In this paper, Kalman Filter has been used for the settlement of the low reliability and estimation of UAV's attitude. Algorithm verification was performed through experiments. The experiment has been used rate table and real flight video. Then, this paper shows the verification result of UAV's attitude estimation algorithm. When the rate table was tested, the error was in 2 degree and the tendency was similar with AHRS measurement states. However, on the experiment of real flight movie, maximum yaw error was 21 degree and Maximum pitch error was 7.8 degree.

Development of Bolt Tap Shape Inspection System Using Computer Vision Technology (컴퓨터 비전 기술을 이용한 볼트 탭 형상 검사 시스템 개발)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.303-309
    • /
    • 2018
  • Computer vision technology is a component inspection to obtain a video image from the camera to the machine to perform the capabilities of the human eye with a field of artificial intelligence, and then analyzed by the algorithm to determine to determine the good and bad of production parts It is widely applied. Shape inspection method was used as how to identify the location of the start point and the end point of the search range, measure the height to the line scan method, in such a manner as to determine the presence or absence of the bolt tabs average brightness of the inspection area in a circular scan type value And the degree of similarity was calculated. The total time it takes to test in the test performance tests of two types of bolts tab enables test 300 min, and demonstrated the accuracy and efficiency of the inspection on the production line represented a complete inspection accuracy.

A Study on Scratch Detection of Semiconductor Package using Mask Image (마스크 이미지를 이용한 반도체 패키지 스크래치 검출 연구)

  • Lee, Tae-Hi;Park, Koo-Rack;Kim, Dong-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.43-48
    • /
    • 2017
  • Semiconductors are leading the development of industrial technology, leading to miniaturization and weight reduction of electronic products as a leading technology, we are dragging the electronic industry market Especially, the semiconductor manufacturing process is composed of highly accurate and complicated processes, and effective production is required Recently, a vision system combining a computer and a camera is utilized for defect detection In addition, the demand for a system for measuring the shape of a fine pattern processed by a special process is rapidly increasing. In this paper, we propose a vision algorithm using mask image to detect scratch defect of semiconductor pockage. When applied to the manufacturing process of semiconductor packages via the proposed system, it is expected that production management can be facilitated, and efficiency of production will be enhanced by failure judgment of high-speed packages.