• Title/Summary/Keyword: camera vision

Search Result 1,386, Processing Time 0.028 seconds

Automatic Focusing Vision System for Inspection of Size and Shape of Small Hole (소형(1mm이하) hole의 형태 및 크기 측정을 위한 자동초점 비젼검사기)

  • Han, Moon-Yong;Han, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.80-86
    • /
    • 1999
  • Since the quality of the coated wires is in various applications dependant on the coating depth, accuracy of hole size of dies used for coating wires must be maintained precisely, in general within one micron. This paper proposes a new vision system which measures automatically the size and shape of small holes having diameters less than 1mm within an error limit of 1 micron. To quickly obtain the focused image, this paper proposes an estimation method of the camera position using only a couple of defocused hole images. It measures the distributions of light intensity around the image boundary and decides the direction and distance of a camera motion. The proposed system measures the size, shape distortion, inclination of the hole against the axis of the dies structure, to decides the acceptability of the dies for use. The proposed algorithm has been implemented using a cheap 640${\times}$480 image system and has shown an average size error of 1micron when measuring the dieses having 0.1mm to 1.0mm diameters. It can be applied to the inspection of the size and position of holes in PCB, too.

  • PDF

A Study for Detecting AGV Driving Information using Vision Sensor (비전 센서를 이용한 AGV의 주행정보 획득에 관한 연구)

  • Lee, Jin-Woo;Sohn, Ju-Han;Choi, Sung-Uk;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2575-2577
    • /
    • 2000
  • We experimented on AGV driving test with color CCD camera which is setup on it. This paper can be divided into two parts. One is image processing part to measure the condition of the guideline and AGV. The other is part that obtains the reference steering angle through using the image processing parts. First, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, AGV knows the driving conditions of AGV. After then using of those information, AGV calculates the reference steering angle changed by the speed of AGV. In the case of low speed, it focuses on the left/right error values of the guide line. As increasing of the speed of AGV, it focuses on the slop of guide line. Lastly, we are to model the above descriptions as the type of PID controller and regulate the coefficient value of it the speed of AGV.

  • PDF

Design of a Telecentric Lens with a Smartphone Camera to Utilize Machine Vision (머신비전을 위한 스마트폰용 텔레센트릭 렌즈의 설계)

  • Choi, Yeon-Chan;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • A generalized structural design equation can be used to simplify and systematize a telecentric lens system composed of multiple lenses, as a creative design method of the authors. Through this structural equation, we have investigated the feasibility and design methodology of a telecentric lens equipped with a conventional smartphone camera for machine vision. As a result, we could verify and present a useful, generalized structural equation termed the $f{\theta}$ formula, being able to divide and combine the whole telecentric lens system into two modularized lens groups.

Design of Low Cost Real-Time Audience Adaptive Digital Signage using Haar Cascade Facial Measures

  • Lee, Dongwoo;Kim, Daehyun;Lee, Junghoon;Lee, Seungyoun;Hwang, Hyunsuk;Mariappan, Vinayagam;Lee, Minwoo;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • Digital signage is becoming part of daily life across a wide range of visual advertisements segments market used in stations, hotels, retail stores, hotels, etc. The current digital signage system used in market is generally works on limited user interactivity with static contents. In this paper, a new approach is proposed using computer vision based dynamic audience adaptive cost-effective digital signage system. The proposed design uses the Camera attached Raspberry Pi Open source platform to employ the real-time audience interaction using computer vision algorithms to extract facial features of the audience. The real-time facial features are extracted using Haar Cascade algorithm which are used for audience gender specific rendering of dynamic digital signage content. The audience facial characterization using Haar Cascade is evaluated on the FERET database with 95% accuracy for gender classification. The proposed system, developed and evaluated with male and female audiences in real-life environments camera embedded raspberry pi with good level of accuracy.

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

Distance measurement System from detected objects within Kinect depth sensor's field of view and its applications (키넥트 깊이 측정 센서의 가시 범위 내 감지된 사물의 거리 측정 시스템과 그 응용분야)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.279-282
    • /
    • 2017
  • Kinect depth sensor, a depth camera developed by Microsoft as a natural user interface for game appeared as a very useful tool in computer vision field. In this paper, due to kinect's depth sensor and its high frame rate, we developed a distance measurement system using Kinect camera to test it for unmanned vehicles which need vision systems to perceive the surrounding environment like human do in order to detect objects in their path. Therefore, kinect depth sensor is used to detect objects in its field of view and enhance the distance measurement system from objects to the vision sensor. Detected object is identified in accuracy way to determine if it is a real object or a pixel nose to reduce the processing time by ignoring pixels which are not a part of a real object. Using depth segmentation techniques along with Open CV library for image processing, we can identify present objects within Kinect camera's field of view and measure the distance from them to the sensor. Tests show promising results that this system can be used as well for autonomous vehicles equipped with low-cost range sensor, Kinect camera, for further processing depending on the application type when they reach a certain distance far from detected objects.

  • PDF

Development of Defect Inspection System for Polygonal Containers (다각형 용기의 결함 검사 시스템 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • In this paper, we propose the development of a defect inspection system for polygonal containers. Embedded board consists of main part, communication part, input/output part, etc. The main unit is a main arithmetic unit, and the operating system that drives the embedded board is ported to control input/output for external communication, sensors and control. The input/output unit converts the electrical signals of the sensors installed in the field into digital and transmits them to the main module and plays the role of controlling the external stepper motor. The communication unit performs a role of setting an image capturing camera trigger and driving setting of the control device. The input/output unit converts the electrical signals of the control switches and sensors into digital and transmits them to the main module. In the input circuit for receiving the pulse input related to the operation mode, etc., a photocoupler is designed for each input port in order to minimize the interference of external noise. In order to objectively evaluate the accuracy of the development of the proposed polygonal container defect inspection system, comparison with other machine vision inspection systems is required, but it is impossible because there is currently no machine vision inspection system for polygonal containers. Therefore, by measuring the operation timing with an oscilloscope, it was confirmed that waveforms such as Test Time, One Angle Pulse Value, One Pulse Time, Camera Trigger Pulse, and BLU brightness control were accurately output.

Estimation of the Dimensions of Horticultural Products and the Mean Plant Height of Plug Seedlings Using Three-Dimensional Images (3차원 영상을 이용한 원예산물의 크기와 플러그묘의 평균초장 추정)

  • Jang, Dong Hwa;Kim, Hyeon Tae;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.358-365
    • /
    • 2019
  • This study was conducted to estimate the dimensions of horticultural products and the mean plant height of plug seedlings using three-dimensional (3D) images. Two types of camera, a ToF camera and a stereo-vision camera, were used to acquire 3D images for horticultural products and plug seedlings. The errors calculated from the ToF images for dimensions of horticultural products and mean height of plug seedlings were lower than those predicted from stereo-vision images. A new indicator was defined for determining the mean plant height of plug seedlings. Except for watermelon with tap, the errors of circumference and height of horticultural products were 0.0-3.0% and 0.0-4.7%, respectively. Also, the error of mean plant height for plug seedlings was 0.0-5.5%. The results revealed that 3D images can be utilized to estimate accurately the dimensions of horticultural products and the plant height of plug seedlings. Moreover, our method is potentially applicable for segmenting objects and for removing outliers from the point cloud data based on the 3D images of horticultural crops.

Measurement of cutting edge ratio using vision system in grinding (연삭에서 비젼시스템을 이용한 절삭날 면적률의 측정)

  • Yu, Eun-Lee;Sa, Seung-Yun;Ryu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1531-1540
    • /
    • 1997
  • Mordern industrial society pursues unmanned system and automation of manufacturing process. Abreast with this tendensy, production of goods which requires advanced accuracy is increasing as well. According to this, the work sensing time of dressing by monitoring and diagnosing the condition of grinding, which is th representative way in accurate manufacturing, is an important work to prevent serious damages which affect grinding process or products by wearing grinding wheel. Computer vision system was composed, so that grinding wheel surface was acquired by CCD camera and the change of cutting edge ratio was measured. Then we used automatic thresholding technique from histogram as a way of dividing grinding cutting edge from grinding surface. As a result, we are trying to approach unmanned system and automation by deciding more accurate time of dressing and by visualizing behavior of grinding wheel by making use of computer vision.

Application of computer vision for rapid measurement of seed germination

  • Tran, Quoc Huy;Wakholi, Collins;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.154-154
    • /
    • 2017
  • Root is an important organ of plant that typically lies below the surface of the soil. Root surface determines the ability of plants to absorb nutrient and water from the surrounding soil. This study describes an application of image processing and computer vision which was implemented for rapid measurement of seed germination such as root length, surface area, average diameter, branching points of roots. A CCD camera was used to obtain RGB image of seed germination which have been planted by wet paper in a humidity chamber. Temperature was controlled at approximately 250C and 90% relative humidity. Pre-processing techniques such as color space, binarized image by customized threshold, removal noise, dilation, skeleton method were applied to the obtained images for root segmentation. The various morphological parameters of roots were estimated from a root skeleton image with the accuracy of 95% and the speed of within 10 seconds. These results demonstrated the high potential of computer vision technique for the measurement of seed germination.

  • PDF