• Title/Summary/Keyword: camera vision

Search Result 1,386, Processing Time 0.025 seconds

Vision based 3D Hand Interface Using Virtual Two-View Method (가상 양시점화 방법을 이용한 비전기반 3차원 손 인터페이스)

  • Bae, Dong-Hee;Kim, Jin-Mo
    • Journal of Korea Game Society
    • /
    • v.13 no.5
    • /
    • pp.43-54
    • /
    • 2013
  • With the consistent development of the 3D application technique, visuals are available at more realistic quality and are utilized in many applications like game. In particular, interacting with 3D objects in virtual environments, 3D graphics have led to a substantial development in the augmented reality. This study proposes a 3D user interface to control objects in 3D space through virtual two-view method using only one camera. To do so, homography matrix including transformation information between arbitrary two positions of camera is calculated and 3D coordinates are reconstructed by employing the 2D hand coordinates derived from the single camera, homography matrix and projection matrix of camera. This method will result in more accurate and quick 3D information. This approach may be advantageous with respect to the reduced amount of calculation needed for using one camera rather than two and may be effective at the same time for real-time processes while it is economically efficient.

A Study on Automatic Detection of Speed Bump by using Mathematical Morphology Image Filters while Driving (수학적 형태학 처리를 통한 주행 중 과속 방지턱 자동 탐지 방안)

  • Joo, Yong Jin;Hahm, Chang Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.55-62
    • /
    • 2013
  • This paper aims to detect Speed Bump by using Omni-directional Camera and to suggest Real-time update scheme of Speed Bump through Vision Based Approach. In order to detect Speed Bump from sequence of camera images, noise should be removed as well as spot estimated as shape and pattern for speed bump should be detected first. Now that speed bump has a regular form of white and yellow area, we extracted speed bump on the road by applying erosion and dilation morphological operations and by using the HSV color model. By collecting huge panoramic images from the camera, we are able to detect the target object and to calculate the distance through GPS log data. Last but not least, we evaluated accuracy of obtained result and detection algorithm by implementing SLAMS (Simultaneous Localization and Mapping system).

Computer Vision Platform Design with MEAN Stack Basis (MEAN Stack 기반의 컴퓨터 비전 플랫폼 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yun, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.

Implementation of Vision System combining Character and Color Recognition (문자 및 색 인식을 혼용한 검사시스템의 구현)

  • Yang, Woo-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.221-225
    • /
    • 2016
  • This paper is about vision system that exhibits automatic examination of the conditions of fuses and relay boxes using a camera. Proposed vision system is composed of three parts: image acquisition, vision algorithm, and user interface. The image acquisition part is composed of illumination and optics. The vision algorithmis the examining part, using the grabbed fuse box image. Lastly, user interface is divided into two parts, user interface for registering features of fuse box and user interface for examination operation.

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

An Omnidirectional Vision-Based Moving Obstacle Detection in Mobile Robot

  • Kim, Jong-Cheol;Suga, Yasuo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.663-673
    • /
    • 2007
  • This paper presents a new moving obstacle detection method using an optical flow in mobile robot with an omnidirectional camera. Because an omnidirectional camera consists of a nonlinear mirror and CCD camera, the optical flow pattern in omnidirectional image is different from the pattern in perspective camera. The geometry characteristic of an omnidirectional camera has influence on the optical flow in omnidirectional image. When a mobile robot with an omnidirectional camera moves, the optical flow is not only theoretically calculated in omnidirectional image, but also investigated in omnidirectional and panoramic images. In this paper, the panoramic image is generalized from an omnidirectional image using the geometry of an omnidirectional camera. In particular, Focus of expansion (FOE) and focus of contraction (FOC) vectors are defined from the estimated optical flow in omnidirectional and panoramic images. FOE and FOC vectors are used as reference vectors for the relative evaluation of optical flow. The moving obstacle is turned out through the relative evaluation of optical flows. The proposed algorithm is tested in four motions of a mobile robot including straight forward, left turn, right turn and rotation. The effectiveness of the proposed method is shown by the experimental results.

3-D Object Tracking using 3-D Information and Optical Correlator in the Stereo Vision System (스테레오 비젼 시스템에서 3차원정보와 광 상관기를 이용한 3차원 물체추적 방법)

  • 서춘원;이승현;김은수
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.248-261
    • /
    • 2002
  • In this paper, we proposed a new 3-dimensional(3-D) object-tracking algorithm that can control a stereo camera using a variable window mask supported by which uses ,B-D information and an optical BPEJTC. Hence, three-dimensional information characteristics of a stereo vision system, distance information from the stereo camera to the tracking object. can be easily acquired through the elements of a stereo vision system. and with this information, we can extract an area of the tracking object by varying window masks. This extractive area of the tracking object is used as the next updated reference image. furthermore, by carrying out an optical BPEJTC between a reference image and a stereo input image the coordinates of the tracking objects location can be acquired, and with this value a 3-D object tracking can be accomplished through manipulation of the convergence angie and a pan/tilt of a stereo camera. From the experimental results, the proposed algorithm was found to be able to the execute 3-D object tracking by extracting the area of the target object from an input image that is independent of the background noise in the stereo input image. Moreover a possible implementation of a 3-D tele-working or an adaptive 3-D object tracker, using the proposed algorithm is suggested.

Accurate Pose Measurement of Label-attached Small Objects Using a 3D Vision Technique (3차원 비전 기술을 이용한 라벨부착 소형 물체의 정밀 자세 측정)

  • Kim, Eung-su;Kim, Kye-Kyung;Wijenayake, Udaya;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.839-846
    • /
    • 2016
  • Bin picking is a task of picking a small object from a bin. For accurate bin picking, the 3D pose information, position, and orientation of a small object is required because the object is mixed with other objects of the same type in the bin. Using this 3D pose information, a robotic gripper can pick an object using exact distance and orientation measurements. In this paper, we propose a 3D vision technique for accurate measurement of 3D position and orientation of small objects, on which a paper label is stuck to the surface. We use a maximally stable extremal regions (MSERs) algorithm to detect the label areas in a left bin image acquired from a stereo camera. In each label area, image features are detected and their correlation with a right image is determined by a stereo vision technique. Then, the 3D position and orientation of the objects are measured accurately using a transformation from the camera coordinate system to the new label coordinate system. For stable measurement during a bin picking task, the pose information is filtered by averaging at fixed time intervals. Our experimental results indicate that the proposed technique yields pose accuracy between 0.4~0.5mm in positional measurements and $0.2-0.6^{\circ}$ in angle measurements.

A study on Profile Measurement for Railway Wheels using High Speed Camera and Vision Technology (고속 하이비젼 카메라 기술을 이용한 철도차량 차륜형상 측정에 관한 연구)

  • Won, Si-Tae;Kwon, Seok-Jin;Huh, Sung-Bum
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Maintenance and repair devices used for the inspection of the main parts of domestic railway vehicles have been imported from abroad. Especially, one of the representative domestic devices, the 'Wheel Profile Inspector System (WPIS)', was made by benchmarking foreign devices; this vehicle has been operated in the field. However, problems such as the reliability and performance of the WPIS in operation have appeared. In this study, in order to improve the precision and reliability of the WPIS for maintenance and inspection of railway vehicle wheels, the researchers improved the railway vehicle's WPIS by applying high-speed vision camera technology and an optimized image algorithm. The test results show that the reliability of the developed WPIS improved by approximately 10.4% compared to that of the conventional system.

Calibration of VLP-16 Lidar Sensor and Vision Cameras Using the Center Coordinates of a Spherical Object (구형물체의 중심좌표를 이용한 VLP-16 라이다 센서와 비전 카메라 사이의 보정)

  • Lee, Ju-Hwan;Lee, Geun-Mo;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2019
  • 360 degree 3-dimensional lidar sensors and vision cameras are commonly used in the development of autonomous driving techniques for automobile, drone, etc. By the way, existing calibration techniques for obtaining th e external transformation of the lidar and the camera sensors have disadvantages in that special calibration objects are used or the object size is too large. In this paper, we introduce a simple calibration method between two sensors using a spherical object. We calculated the sphere center coordinates using four 3-D points selected by RANSAC of the range data of the sphere. The 2-dimensional coordinates of the object center in the camera image are also detected to calibrate the two sensors. Even when the range data is acquired from various angles, the image of the spherical object always maintains a circular shape. The proposed method results in about 2 pixel reprojection error, and the performance of the proposed technique is analyzed by comparing with the existing methods.