• Title/Summary/Keyword: camera vision

Search Result 1,386, Processing Time 0.03 seconds

A development of the simple camera calibration system using the grid type frame with different line widths (다른 선폭들로 구성된 격자형 교정판을 이용한 간단한 카메라 교정 시스템의 개발)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.371-374
    • /
    • 1997
  • Recently, the development of computer achieves a system which is similar to the mechanics of human visual system. The 3-dimensional measurement using monocular vision system must be achieved a camera calibration. So far, the camera calibration technique required reference target in a scene. But, these methods are inefficient because they have many calculation procedures and difficulties in analysis. Therefore, this paper proposes a native method that without reference target in a scene. We use the grid type frame with different line widths. This method uses vanishing point concept that possess a rotation parameter of the camera and perspective ration that perspect each line widths into a image. We confirmed accuracy of calibration parameter estimation through experiment on the algorithm with a grid paper with different line widths.

  • PDF

Development of Fuzzy Controller for Camera Autotracking System (원격 감시카메라 자동추적시스템의 퍼지제어기 개발에 관한 연구)

  • 윤지섭;박영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2062-2072
    • /
    • 1994
  • This paper presents the development of a fuzzy controller for driving camera pan/tilt device so that the camera's viewing direction can automatically track a moving object. To achieve computational efficiency a non-contact type displacement follower is used as a feedback sensor instead of a vision camera. The displacement follower, however, is extremely sensitive to object's lighting condition and results in unstable response at high speed. To this end, a fuzzy controller is developed in such a way to provide stable tracking performance at high speed where the sensory signal is subjected to intermittant disturbances of large magnitude. The test result shows stable tracking response even for high speed and non-uniform lighting condition. The resulting camera autotracking system can be adopted as an effective tool for visual transfer in the context of teleoperation and autonomous robotics.

Camera and LIDAR Combined System for On-Road Vehicle Detection (도로 상의 자동차 탐지를 위한 카메라와 LIDAR 복합 시스템)

  • Hwang, Jae-Pil;Park, Seong-Keun;Kim, Eun-Tai;Kang, Hyung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.390-395
    • /
    • 2009
  • In this paper, we design an on-road vehicle detection system based on the combination of a camera and a LIDAR system. In the proposed system, the candidate area is selected from the LIDAR data using a grouping algorithm. Then, the selected candidate area is scanned by an SVM to find an actual vehicle. The morphological edged images are used as features in a camera. The principal components of the edged images called eigencar are employed to train the SVM. We conducted experiments to show that the on-road vehicle detection system developed in this paper demonstrates about 80% accuracy and runs with 20 scans per second on LIDAR and 10 frames per second on camera.

A Study on the Camera Calibration Algorithm using Perspective Ratio of Difference Line Widths

  • Jeong, Jun-Ik;Song, Suck-Woo;Lee, Ho-Soon;Rho, Do-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.1-63
    • /
    • 2001
  • At 3-D vision measuring, the camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. One is that establishes reference points in space, and the other is that uses the grid type frame and statistical method. But, the former has difficult to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. The advantage of this algorithm is that it can estimate position, pose and distance between camera and object ...

  • PDF

A Study on the Camera Calibration Using Lens Distortion Model (렌즈의 왜곡 모델을 이용한 카메라 보정에 관한 연구)

  • Dong Min Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.56-68
    • /
    • 1994
  • The objective of camera calibration is to determine the internal optical characteristics of camera and the three-dimensional position and orientation of camera with respect to the real world. Calibration procedure for computer vision should be automatical, accurate and applicable to general purpose cameras and lenses. In this paper, we present camera calibration method which meets the above requirements. The algorithm is based on the two-stage method which takes into account lens distortion in the second stage. In this paper, the overdetermined nonlinear system is established in terms of the constraints to all directions and our calibration algorithm is proposed which is constructed by using Marquardt iterations and our calibration algorithm is proposed which is constructed by using Marquardt iteration method in solving nonlinear equations. Experimental results indicate that lens distortion should be taken into consideration for the calibration of the general-purpose lens. With 24 calibration points acquired out of 512$\times$512 image, the proposed algorithm came up with average error of less than 1 pixel and showed a higher accuracy over the conventional two-stage method.

  • PDF

Localization of a Monocular Camera using a Feature-based Probabilistic Map (특징점 기반 확률 맵을 이용한 단일 카메라의 위치 추정방법)

  • Kim, Hyungjin;Lee, Donghwa;Oh, Taekjun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.367-371
    • /
    • 2015
  • In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.

Flexible camera series network for deformation measurement of large scale structures

  • Yu, Qifeng;Guan, Banglei;Shang, Yang;Liu, Xiaolin;Li, Zhang
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.587-595
    • /
    • 2019
  • Deformation measurement of large scale structures, such as the ground beds of high-rise buildings, tunnels, bridge, and railways, are important for insuring service quality and safety. The pose-relay videometrics method and displacement-relay videometrics method have already presented to measure the pose of non-intervisible objects and vertical subsidence of unstable areas, respectively. Both methods combine the cameras and cooperative markers to form the camera series networks. Based on these two networks, we propose two novel videometrics methods with closed-loop camera series network for deformation measurement of large scale structures. The closed-loop camera series network offers "closed-loop constraints" for the camera series network: the deformation of the reference points observed by different measurement stations is identical. The closed-loop constraints improve the measurement accuracy using camera series network. Furthermore, multiple closed-loops and the flexible combination of camera series network are introduced to facilitate more complex deformation measurement tasks. Simulated results show that the closed-loop constraints can enhance the measurement accuracy of camera series network effectively.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Development of a Vision-based Position Estimation System for the Inspection and Maintenance Manipulator of Steam Generator Tubes a in Nuclear Power Plant

  • Jeong, Kyung-Min;Cho, Jae-Wan;Kim, Seung-Ho;Kim, Seung-Ho;Jung, Seung-Ho;Shin, Ho-Chul;Choi, Chang-Whan;Seo, Yong-Chil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.772-777
    • /
    • 2003
  • A vision-based tool position estimation system for the inspection and maintenance manipulator working inside the steam generator bowl of nuclear power plants can help human operators ensure that the inspection probe or plug are inserted to the targeted tube. Some previous research proposed a simplified tube position verification system that counts the tubes passed through during the motion and displays only the position of the tool. In this paper, by using a general camera calibration approach, tool orientation is also estimated. In order to reduce the computation time and avoid the parameter bias problem in an ellipse fitting, a small number of edge points are collected around the large section of the ellipse boundary. Experiment results show that the camera calibration parameters, detected ellipses, and estimated tool position are appropriate.

  • PDF

LATERAL CONTROL OF AUTONOMOUS VEHICLE USING SEVENBERG-MARQUARDT NEURAL NETWORK ALGORITHM

  • Kim, Y.-B.;Lee, K.-B.;Kim, Y.-J.;Ahn, O.-S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2002
  • A new control method far vision-based autonomous vehicle is proposed to determine navigation direction by analyzing lane information from a camera and to navigate a vehicle. In this paper, characteristic featured data points are extracted from lane images using a lane recognition algorithm. Then the vehicle is controlled using new Levenberg-Marquardt neural network algorithm. To verify the usefulness of the algorithm, another algorithm, which utilizes the geometric relation of a camera and vehicle, is introduced. The second one involves transformation from an image coordinate to a vehicle coordinate, then steering is determined from Ackermann angle. The steering scheme using Ackermann angle is heavily depends on the correct geometric data of a vehicle and a camera. Meanwhile, the proposed neural network algorithm does not need geometric relations and it depends on the driving style of human driver. The proposed method is superior than other referenced neural network algorithms such as conjugate gradient method or gradient decent one in autonomous lateral control .