• Title/Summary/Keyword: camera module

Search Result 501, Processing Time 0.03 seconds

Teleoperation Using Reconstructed Graphic Model (재구성된 그래픽 모델을 이용한 원격제어)

  • Chung, Seong-Youb;Yoon, Hyun-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3876-3881
    • /
    • 2012
  • In typical master/slave teleoperation systems, a human operator generally manipulates the master to control the slave through the visual information like camera image. However, the operator may get into trouble due to the limited visual information depending on the camera positions and the delay on the visual information because of low communication bandwidth. To cope with this inherit problem in the camera-based teleoperation system, this paper presents a teleoperation system using a reconstructed graphic model instead of the camera image. The proposed teleoperation system consists of a robot control module, a master module using a force-reflective joystick, and a graphic user interface (GUI) module. The graphic user interface module provides the operator with a 3D model reconstructed using a small set of sensing data received from the remote site. The proposed teleoperation system is evaluated through a peg-in-hole assembly task.

Object Tracking Framework of Video Surveillance System based on Non-overlapping Multi-camera (비겹침 다중 IP 카메라 기반 영상감시시스템의 객체추적 프레임워크)

  • Han, Min-Ho;Park, Su-Wan;Han, Jong-Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.141-152
    • /
    • 2011
  • Growing efforts and interests of security techniques in a diverse surveillance environment, the intelligent surveillance system, which is capable of automatically detecting and tracking target objects in multi-cameras environment, is actively developing in a security community. In this paper, we propose an effective visual surveillance system that is avaliable to track objects continuously in multiple non-overlapped cameras. The proposed object tracking scheme consists of object tracking module and tracking management module, which are based on hand-off scheme and protocol. The object tracking module, runs on IP camera, provides object tracking information generation, object tracking information distribution and similarity comparison function. On the other hand, the tracking management module, runs on video control server, provides realtime object tracking reception, object tracking information retrieval and IP camera control functions. The proposed object tracking scheme allows comprehensive framework that can be used in a diverse range of application, because it doesn't rely on the particular surveillance system or object tracking techniques.

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF

Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation (천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.

A Multi-Sensor Module of Snake Robot for Searching Survivors in Narrow Space (협소 공간 생존자 탐색을 위한 뱀형 로봇의 다중 센서 모듈)

  • Kim, Sungjae;Shin, Dong-Gwan;Pyo, Juhyun;Shin, Juseong;Jin, Maolin;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2021
  • In this study, we present a multi-sensor module for snake robot searching survivors in a narrow space. To this end, we integrated five sensor systems by considering the opinions of the first responders: a gas sensor to detect CO2 gases from the exhalation of survivors, a CMOS camera to provide the image of survivors, an IR camera to see in the dark & smoky environment, two microphones to detect the voice of survivors, and an IMU to recognize the approximate location and direction of the robot and survivors. Furthermore, we integrated a speaker into the sensor module system to provide a communication channel between the first responders and survivors. To integrated all these mechatronics systems in a small, compact snake head, we optimized the positions of the sensors and designed a stacked structure for the whole system. We also developed a user-friendly GUI to show the information from the proposed sensor systems visually. Experimental results verified the searching function of the proposed sensor module system.

초고에너지 우주선과 고층대기 극한방전 현상 관측을 위한 TUS(Tracking Ultraviolet Setup) 및 Pinhole Camera 개발 및 진행상황

  • Kim, Min-Bin;Kim, Ji-Eun;Kim, Ye-Won;Na, Go-Un;Park, Il-Heung;Seo, Jeong-Eun;Lee, Jik;Jeong, Ae-Ra;Garipov, G.;Khrenov, B.;Klimov, P.;Panasyuk, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.209.1-209.1
    • /
    • 2012
  • TUS(Tracking Ultraviolet Setup)는 5x1019 eV 이상의 초고에너지 우주선의 스펙트럼과 그 기원, 그리고 고층대기 극한방전 현상(TLE) 관측을 위한 우주망원경이다. 위성 Lomonosov의 탑재체로 2013년에 발사예정에 있으며 지구로부터 550km 상공에서 지구를 돌며 3년 이상 임무를 수행할 예정이다. TUS는 크게 반사경과 Detector Module 두 부분으로 나뉜다. 7개의 육각형 프레넬 거울을 이용한 $2m^2$ 크기의 반사경과 256개의 PMT(Photo Multiplier Tube)로 구성된 Detector Module을 이용하여 지구 대기에서 초고에너지 우주선에 의해 발생하는 UV fluorescence와 Cherenkov light를 관측한다. TUS Detector Module의 한 부분인 Pinhole Camera는 본 연구단의 기술로 직접 개발한 탑재체로서 TUS 반사경을 통하지 않고 두개의 $8{\times}8$ 어레이 MAPMT (Multi Anode PMT)가 직접 지구를 바라보며 고층대기 극한방전 현상을 관측한다. Pinhole camera는 TUS의 시야각을 포괄하는 넓은 시야각을 가지고 있으며 빠른 트리거 시스템으로 고층대기 극한 방전 현상을 관측하며, 이 방전현상과 TUS가 관측하는 초고에너지 우주선과의 상관 관계를 연구한다. 현재 TUS 및 Pinhole Camera는 러시아에서 조립되어 우주환경 인증 시험 및 인터페이스 테스트가 진행되고 있다. 본 발표에서는 TUS와 Pinhole Camera를 소개하고 현재까지의 진행상황 및 테스트 결과에 대해 보고하고자 한다.

  • PDF

Agile and Intelligent Manufacturing System for a Small IT Parts Assembly (초소형 IT 부품 조립을 위한 지능형 민첩 생산시스템)

  • Kim, Won;Kang, Heui-Seok;Cho, Young-June;Jung, Ji-Young;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2007
  • The tiny camera module used in a modern cellular phone requires precise assembly processes. To meet the requirement of high resolution and functionality, the number of parts used in a camera module becomes larger and larger. As the market grows rapidly, an automatic camera phone assembly process is required. However, diverse production line and short life cycle make it difficult to build an affordable assembly line. To attack this problem, a flexible and expandable lens assembly system is proposed. To save the manufacturing line set-up time, modular concept is adopted. Also, each module is designed to have intelligence to simplify the set-up process. The assembly system is built up on the standard flat-form that includes a vibration free base, air and electric supplies, and electronic controllers, etc. Furthermore, the assembly cell has the capability of handling tiny, thin, or transparent parts which are very difficult to identify without machine vision.

Development of Scheduler Based on Simulation for Phone Camera Lens Module Manufacturing System (폰카메라 렌즈모듈 제조시스템을 위한 시뮬레이션 기반의 스케줄러 개발)

  • Kim, Jae Hoon;Lee, Seung Woo;Lee, Dae Ryoung;Park, Chul Soon;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.131-142
    • /
    • 2014
  • Phone camera lens module is assembled with a barrel, multiple lenses, multiple spacers and a shield. The major processes of manufacturing system are injection molding, coating and assembly processes, and each process has multiple machines. In this paper, we introduce a scheduler based on simulation model which can be used for frequent rescheduling problem caused by urgent orders, breaking down of molds and failures of machines. The scheduling algorithm uses heuristic Backward-Forward method, and the objective is to minimize the number of tardy orders.

Improvement of Assembly Characteristics of a Lens Module in a Mobile Phone Camera using Finite Element Analysis (유한요소해석을 사용한 휴대폰 카메라용 렌즈모듈의 결합특성 개선)

  • Moon, Yang-Ho;Moon, Jae-Ho;Lyu, Min-Young;Park, Keun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • The present study covers the optimal design for a lens module in a mobile phone camera by using the design of experiments (DOE) and finite element (FE) analysis. FE analyses are performed to investigate the effect of design parameters on the amount of torque required to assemble a barrel and a housing part. The DOE approach is then performed to optimize the design parameters in order to maintain an appropriate torque with less variations.

Agile and Intelligent Manufacturing System for a Subminiature Lens Assembly Automation (초소형 렌즈 모듈의 조립 자동화를 위한 지능형 민첩 생산시스템)

  • Kim W.;Kang H.S.;Cho Y.J.;Jung J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.169-172
    • /
    • 2005
  • Tiny camera module using in modern cellular phone requires precise assembly processes. Higher camera resolution and more functions such as zoom lens make the number of camera parts bigger. As market grows rapidly, automatic assembly process is required. However, diverse product line and short life cycle make it difficult. To attack this, a flexible and expandable lens assembly system is proposed. For the fast manufacturing line formation, modular concept is adopted. Also each module is designed to have intelligence to save system formation time. The assembly system is built up on the standard flat-form which provides vibration free base, air and electric supply, controllers, etc. Futhermore, the assembly cell has the capability of handling tiny, thin, or transparent parts which are very difficult to align with vision.

  • PDF