• Title/Summary/Keyword: camera image

Search Result 4,917, Processing Time 0.034 seconds

Implementation for the Biometric User Identification System Based on Smart Card (SMART CARD 기반 생체인식 사용자 인증시스템의 구현)

  • 주동현;고기영;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • This paper is research about the improvement of recognition rate of the biometrics user identification system using the data previously stored in the non contact Ic smart card. The proposed system identifies the user by analyzing the iris pattern his or her us. First, after extracting the area of the iris from the image of the iris of an eye which is taken by CCD camera, and then we save PCA Coefficient using GHA(Generalized Hebbian Algorithm) into the Smart Card. When we confirmed the users, we compared the imformation of the biometrics of users with that of smart card. In case two kinds of information was the same, we classified the data by using SVM(Support Vector Machine). The Experimental result showed that this system outperformed the previous developed system.

  • PDF

Adaptive Character Segmentation to Improve Text Recognition Accuracy on Mobile Phones (모바일 시스템에서 텍스트 인식 위한 적응적 문자 분할)

  • Kim, Jeong Sik;Yang, Hyung Jeong;Kim, Soo Hyung;Lee, Guee Sang;Do, Luu Ngoc;Kim, Sun Hee
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.59-71
    • /
    • 2012
  • Since mobile phones are used as common communication devices, their applications are increasingly important to human's life. Using smart-phones camera to collect daily life environment's information is one of targets for many applications such as text recognition, object recognition or context awareness. Studies have been conducted to provide important information through the recognition of texts, which are artificially or naturally included in images and movies acquired from mobile phones. In this study, a character segmentation method that improves character-recognition accuracy in images obtained from mobile phone cameras is proposed. The proposed method first classifies texts in a given image to printed letters and handwritten letters since segmentation approaches for them are different. For printed letters, rough segmentation process is conducted, then the segmented regions are integrated, deleted, and re-segmented. Segmentation for the handwritten letters is performed after skews are corrected and the characters are classified by integrating them. The experimental result shows our method achieves a successful performance for both printed and handwritten letters as 95.9% and 84.7%, respectively.

  • PDF

Geometrical Building Analysis for Outdoor Environment Understanding of Autonomous Navigation Robot (자율주행 로봇의 외부환경 이해를 위한 기하학적인 빌딩 분석)

  • Kim, Dae-Nyeon;Trinh, Hoang-Hon;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.277-285
    • /
    • 2010
  • This paper describes an approach to analyze geometrical information of building images for understanding outdoor environment of autonomous navigation robot. Line segments and color information are used to classily a building with the other objects such as sky, trees, and roads. The line segments and their two neighboring regions are extracted from detected edges in image. The model of line segment (MLS) consists of color information of neighbor regions. This model rules out the line segments of non-building face. A building face converges into dominant vanishing points (DVPs) which include one vertical point and one of five horizontal points in maximum. The intersection of vertical and horizontal lines creates a facet of building. The geometrical characteristics such as the center coordinates, area, aspect ratio and aligned coexistence are used for extracting the windows in the building facet. In experiments, 150 building faces and 1607 windows were detected from the database of outdoor environment. We found that this result shows 94.46% detection rate. These experimental images were all taken in Ulsan metropolitan city in Korea under difference of viewpoints, daytime, camera system and weather condition.

Experimental Study on the Soot Formation Characteristics of Alkane-based Single Fuel Droplet (알케인계 단일 연료 액적의 Soot 생성 특성에 관한 실험적 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.80-86
    • /
    • 2017
  • The soot formation characteristics of various alkane-based single fuel droplets were studied in this work. Also, This study was performed to provide the database of the soot behavior and formation of alkane-based single fuel droplet. The experimental conditions were set to 1.0 atm of ambient pressure ($P_{amb}$), 21% of oxygen concentration ($O_2$) and 79% of nitrogen concentration ($N_2$). Combustion and soot formation of single fuel droplet was visualized by visualization system with high speed camera. At the same time, ambient pressure, oxygen concentration and nitrogen concentration were maintained by ambient condition control system. Soot formation characteristics was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The results of toluene fuel droplet showed the largest soot generation. Soot volume fraction ($f_v$) was almost the same under the identical fuel types regardless of various initial droplet diameter ($d_0$) since thermophoretic flux was not much changed under the same ambient conditions.

Detection of a Land and Obstacles in Real Time Using Optimal Moving Windows (최적의 Moving Window를 사용한 실시간 차선 및 장애물 감지)

  • Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.57-69
    • /
    • 2000
  • A moving window technique for detecting a lane and obstacles using the Images captured by a CCD camera attached in an automobile, is proposed in this paper To process the dynamic images in real time, there could be many constraints on the hardware To overcome these hardware constraints and to detect the lane and obstacles in real time, the optimal size of window IS determined based upon road conditions and automobile states. By utilizing the sub-Images inside the windows, detection of the lane and obstacles become possible m real time. For each Image frame, the moving windows are re-determined following the predicted directions based on Kalman filtering theory to Improve detection accuracy, as well as efficiency The feasibility of proposed algorithm IS demonstrated through the simulated experiments of highway driving.

  • PDF

A STUDY ON IMPLEMENTATION OF OUTWARD AGING AND HEALTH-STATE MONITORING SYSTEM BASED ON IMAGE PROCESSING (영상처리에 기반한 노인 대상 외양적 노화 및 건강 상태 모니터링 시스템에 관한 연구)

  • Hwang, Kun-Su;Kil, Se-Kee;Shen, Dong-Fan;Min, Hong-Ki;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.881-882
    • /
    • 2006
  • According as society looks graying trend gradually, more shaped system that can achieve measuring health-state of old people more harmoniously construction required in field of old people's welfare and medical treatment. Health-state is measured by two methods of contact and non-contact. The first, for example measurement of blood pressure or electrocardiogram, requires that measuring equipments are attached on human body but the second, for example X-Ray or MRI, is not. But both of methods are have some of defect, for example attaching equipments, needing of the special equipments or the necessary time, etc. Therefore desirable method of monitoring system must have minimum interrupt about daily life. This study suggest the system that can monitor the user, especially old people's outward aging and health-state by use the PAN TILTER and CCD camera.

  • PDF

Heat Transfer Simulation and Effect of Tool Pin Profile and Rotational Speed on Mechanical Properties of Friction Stir Welded AA5083-O

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro- and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.

Influence of the Welding Speeds and Changing the Tool Pin Profiles on the Friction Stir Welded AA5083-O Joints

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.44-51
    • /
    • 2017
  • In the present study, AA 5083-O plates are joined by friction stir welding technique. A universal milling machine was used to perform the welding process of the work-pieces which were fixed on the proper position by a vice. The joints were friction stir welded by two tools with different pin profiles; cylindrical threaded pin and tapered smooth one at different rotational speed values; 400 rpm and 630 rpm, and different welding speed values; 100 mm/min and 160 mm/min. During FSW of each joint, the temperature was measured by infra-red thermal image camera. The welded joints were inspected by visually as well as by the macro- and microstructure evolutions. Furthermore, the joints were tested for measuring the hardness and the tensile strength to study the effect of changing the FSW parameters on the mechanical properties. The results show that increasing the rotational speed results in increasing the peak temperature, while increasing the welding speed results in decreasing the peak temperature for the same tool pin profile. Defect free welds were obtained at lower rotational speed by the threaded tool profile. Moreover, the threaded tool pin profile gives superior mechanical properties at lower rotational speed.

Evidence of Stellar Substructures on the Near-infrared Image of M31 System

  • Kang, Minhee;Chun, Sang-Hyun;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2014
  • Hierarchical merging scenario indicates that galaxies go through major and minor merger events during their formation and evolution. As a result of the merging, substructural features of remnants such as stellar stream are shown around a current galaxy system. To find evidence of stellar substructures on M31 system, we used the near-infrared images of JHK filters obtained from the Wide Field Camera (WFCAM) at UKIRT 3.8m. A total sky coverage is an area of about$ 4.5^{\circ}{\times}6^{\circ}$ around M31. Indeed, M31 system which consists of several satellite systems contains stellar substructures such as giant stellar stream, loops, and spurs. By analysing stellar populations on the near-infrared color-magnitude diagrams, we selected member star candidates of each stellar substructure, from which we map out spatial distribution of stars in the vicinity of M31 system. Here, we present spatial density distribution maps of stars on each substructure over the entire field of M31 system. Also, we discuss the possible origin of the substructures and the implications on the galaxy assembly process.

  • PDF

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.