• Title/Summary/Keyword: camera image

Search Result 4,917, Processing Time 0.036 seconds

CONSIDERATION OF THE RELATION BETWEEN DISTANCE AND CHANGE OF PANEL COLOR BASED ON AERIAL PERSPECTIVE

  • Horiuchi, Hitoshi;Kaneko, Satoru;Sato, Mie;Ozaki, Koichi;Kasuga, Masao
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.695-698
    • /
    • 2009
  • Three-dimensional (3D) shape recognition and distance recognition methods utilizing monocular camera systems have been required for field of virtual-reality, computer graphics, measurement technology and robot technology. There have been many studies regarding 3D shape and distance recognition based on geometric and optical information, and it is now possible to accurately measure the geometric information of an object at short range distances. However, these methods cannot currently be applied to long range objects. In the field of virtual-reality, all visual objects must be presented at widely varying ranges, even though some objects will be hazed over. In order to achieve distance recognition from a landscape image, we focused on the use of aerial perspective to simulate a type of depth perception and investigated the relationship between distance and color perception. The applicability of our proposed method was demonstrated in experimental results.

  • PDF

A Study on the Flame Propagation Characteristics for LPG and Gasoline fuels by Using Laser Deflection Method (레이저 굴절법을 이용한 LPG와 가솔린 연료의 화염전파 특성에 관한 연구)

  • Lee, Kihyung;Lee, Changsik;Kang, Kernyong;Kang, Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1608-1614
    • /
    • 2000
  • For the purpose of obtaining fundamental data which is needed to develope combustion system of LPG engine, we made constant volume chamber and analyzed flame propagation characteristics under different intial temperature, initial pressure and equivalence ratio which affect combustion of LPG. We investigated flame propagation speed of each fuel using laser deflection method and compared with the investigated flame propagation speed of each fuel using laser deflection method and compared with the results of image processing of flame. As a result, the maximum flame propagation speed was found at equivalence ratio 1.0 and 1.1 for LPG and gasoline, respectively. In the lean region, we can see that flame propagation speed of LPG surpasses that of gasoline. On the contrary, flame propagation speed of gasoline surpasses LPG in the rich region. As initial temperature and initial pressure were higher, flame propagation speed was faster. And, as equivalence ratio was larger and initial temperature was higher, combustion duration was shorter and maximum combustion pressure was higher.

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

A Study on Lane Sensing System Using Stereo Vision Sensors (스테레오 비전센서를 이용한 차선감지 시스템 연구)

  • Huh, Kun-Soo;Park, Jae-Sik;Rhee, Kwang-Woon;Park, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.230-237
    • /
    • 2004
  • Lane Sensing techniques based on vision sensors are regarded promising because they require little infrastructure on the highway except clear lane markers. However, they require more intelligent processing algorithms in vehicles to generate the previewed roadway from the vision images. In this paper, a lane sensing algorithm using vision sensors is developed to improve the sensing robustness. The parallel stereo-camera is utilized to regenerate the 3-dimensional road geometry. The lane geometry models are derived such that their parameters represent the road curvature, lateral offset and heading angle, respectively. The parameters of the lane geometry models are estimated by the Kalman filter and utilized to reconstruct the lane geometry in the global coordinate. The inverse perspective mapping from the image plane to the global coordinate considers roll and pitch motions of a vehicle so that the mapping error is minimized during acceleration, braking or steering. The proposed sensing system has been built and implemented on a 1/10-scale model car.

A Study on Unsteady Flow Characteristics in a Industrial Mixer with Hydrofoil Types Impeller by PIV (PIV에 의한 산업용 교반기내 Hydrofoil 임펠러 형태에 따른 비정상 유동특성에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kang, Mun-Hu;Kim, Jin-Gu;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.863-868
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers arc hydrofoil turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz, The maximum velocity around neo-hydrofoil impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high-viscosity materials.

  • PDF

Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle (오리피스 노즐 수직 2 상 유동의 물질전달 특성)

  • Kim, Dong Jun;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.817-824
    • /
    • 2015
  • Experiments were carried out to investigate the flow and mass transfer characteristics of an orifice nozzle. Measurements of primary and suction flow rates, dissolved oxygen concentration, and electric power were obtained. Vertically injected mixed-jet images were captured by a direct visualization technique with a high speed camera unit. The mass ratio, volumetric mass transfer coefficient, and mass transfer performance were calculated using the measured data. As the primary flow pressure increases, the mass ratio decreases slightly, while the volumetric mass transfer coefficient and electric power increase. As the primary flow pressure increases and the mass ratio decreases, the mass transfer rate increases because of the fine bubbles and wider distribution of the bubbles.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Design and Implementation of an optical wavelength analyzer (CCD 카메라를 이용한 방사선 탐지기의 영상화 기술 연구)

  • Park, Sung-hoon;Park, Jong Won;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.811-813
    • /
    • 2013
  • In order to measure the radiation, there are types of sensors plurality. I was using the detection method and sensitivity of the CCD sensor in the scintillator and collimator in the sensor. In this study, in order to detect radiation using a CCD sensor with high resolution, by measuring the radiation dose by processing the visible light generated in response to radiation of the image coming into the CCD in the scintillator in space it is to present a pointer that radiation comes out most. It is intended to imaging by calculation of the distance to the radiation source to the implementation of the stereo camera system video in the future.

  • PDF

A Detection of New Vehicle License Plates Using Difference of Gaussian and Iterative Labeling (가우시안 차이와 반복 레이블링을 이용한 신형 차량번호판 검출)

  • Yeo, Jae-yun;Kim, Min-ha;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.78-81
    • /
    • 2012
  • In this paper, we proposed the new vehicle license plates detection method which is available in a various fields, including vehicle access control, illegal parking and speeding vehicle crack down. First, we binarize an image by using difference of gaussian filter to find a sequence of numbers of plates. Second, we determine the plate region by labeling repeatedly using the morphological characteristics of the plates. Finally, we use a projective transformation for correcting the distortion that occurs because of the camera or the location of the vehicle.

  • PDF

Simultaneous Tracking of Multiple Construction Workers Using Stereo-Vision (다수의 건설인력 위치 추적을 위한 스테레오 비전의 활용)

  • Lee, Yong-Ju;Park, Man-Woo
    • Journal of KIBIM
    • /
    • v.7 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • Continuous research efforts have been made on acquiring location data on construction sites. As a result, GPS and RFID are increasingly employed on the site to track the location of equipment and materials. However, these systems are based on radio frequency technologies which require attaching tags on every target entity. Implementing the systems incurs time and costs for attaching/detaching/managing the tags or sensors. For this reason, efforts are currently being made to track construction entities using only cameras. Vision-based 3D tracking has been presented in a previous research work in which the location of construction manpower, vehicle, and materials were successfully tracked. However, the proposed system is still in its infancy and yet to be implemented on practical applications for two reasons. First, it does not involve entity matching across two views, and thus cannot be used for tracking multiple entities, simultaneously. Second, the use of a checker board in the camera calibration process entails a focus-related problem when the baseline is long and the target entities are located far from the cameras. This paper proposes a vision-based method to track multiple workers simultaneously. An entity matching procedure is added to acquire the matching pairs of the same entities across two views which is necessary for tracking multiple entities. Also, the proposed method simplified the calibration process by avoiding the use of a checkerboard, making it more adequate to the realistic deployment on construction sites.