• Title/Summary/Keyword: camera image

Search Result 4,917, Processing Time 0.034 seconds

Real time Omni-directional Object Detection Using Background Subtraction of Fisheye Image (어안 이미지의 배경 제거 기법을 이용한 실시간 전방향 장애물 감지)

  • Choi, Yun-Won;Kwon, Kee-Koo;Kim, Jong-Hyo;Na, Kyung-Jin;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.766-772
    • /
    • 2015
  • This paper proposes an object detection method based on motion estimation using background subtraction in the fisheye images obtained through omni-directional camera mounted on the vehicle. Recently, most of the vehicles installed with rear camera as a standard option, as well as various camera systems for safety. However, differently from the conventional object detection using the image obtained from the camera, the embedded system installed in the vehicle is difficult to apply a complicated algorithm because of its inherent low processing performance. In general, the embedded system needs system-dependent algorithm because it has lower processing performance than the computer. In this paper, the location of object is estimated from the information of object's motion obtained by applying a background subtraction method which compares the previous frames with the current ones. The real-time detection performance of the proposed method for object detection is verified experimentally on embedded board by comparing the proposed algorithm with the object detection based on LKOF (Lucas-Kanade optical flow).

Lattice-Based Background Motion Compensation for Detection of Moving Objects with a Single Moving Camera (이동하는 단안 카메라 환경에서 이동물체 검출을 위한 격자 기반 배경 움직임 보상방법)

  • Myung, Yunseok;Kim, Gyeonghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.52-54
    • /
    • 2015
  • In this paper we propose a new background motion compensation method which can be applicable to moving object detection with a moving monocular camera. To estimate the background motion, a series of image warpings are carried out for each pair of the corresponding patches, defined by the fixed-size lattice, based on the motion information extracted from the feature points surrounded by the patches and the estimated camera motion. Experiment results proved that the proposed has approximately 50% faster in execution time and 8dB higher in PSNR comparing to a conventional method.

A Improved Scene based Non-uniformity Correction Algorithm for Infrared Camera

  • Hyun, Ho-Jin;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • In this paper, we propose an efficient scene based non-uniformity correction algorithm which performs the offset correction using the uniform obtained from input scenes for Infrared camera. In general, pixel outputs of a infrared detector can not be uniform. Therefore, the non-uniformity correction procedure need to be performed to make the image outputs uniform. A typical non-uniformity correction method uses a black body at the laboratory to obtain the output of the infrared detector's pixels for two temperatures, HOT and COLD, and calculates the non-uniformity correction parameters. However, output characteristics of the Infrared detector changes while the Infrared camera is operated, the fixed pattern noise of the Infrared detector and dead pixels are generated. To remove the noise, the offset correction is generally performed. The offset correction procedure usually need the additional device such as a thermo-electric cooler, shutter, or non-uniformity correction lens. Therefore, we introduce a general scene based non-uniformity correction technique without additional equipment, and then we propose an improved non-uniformity correction algorithm based on image to solve the problem of the existing technique.

A New Mobile Watermarking Scheme Based on Display-capture

  • Bae, Jong-Wook;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.815-823
    • /
    • 2009
  • Most of existing watermarking schemes insert and extract a watermark, focusing on the visual conservation of an original image. However, existing watermarking schemes could be difficult for a watermark detection in case of various distortion caused by display-capture devices. Therefore, we propose a new display-capture based mobile watermarking scheme. The proposed watermarking scheme is a new concept for embedding a watermark, which uses the generated image instead of a given original image. For effective watermark decoding, we also present a method for detecting the background image whose error bit can not be corrected because of various heavy distortion and for avoiding it from the decoding process. For this scheme, we adopt distortion coefficients of camera calibration when we separate a background image from a captured image. For finding available correction bits of ECC through the decoding process, we capture 30,000 images and then calculate the separation ratio of a background image and the average error bits per an image. As experimental result, the separation ratio of a background image is about 96.5% in 30,000 captured image. And the false alarm ratio shows about $5.18{\times}10^{-4}$ in the separated background image. And also we can confirm the availability of real-time processing because the mean execution time is about 82ms per an image for capturing and decoding.

  • PDF

A New 3D Active Camera System for Robust Face Recognition by Correcting Pose Variation

  • Kim, Young-Ouk;Jang, Sung-Ho;Park, Chang-Woo;Sung, Ha-Gyeong;Kwon, Oh-Yun;Paik, Joon-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1485-1490
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user, does face recognition and vital for many surveillance based systems. Advantage of face recognition when compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to decrease in dimension from of image acquisition step and various changes associated with face pose and background. Factors that deteriorate performance of face recognition are many such as distance from camera to face, lighting change, pose change, and change of facial expression. In this paper, we implement a new 3D active camera system to prevent various pose variation that influence face recognition performance and propose face recognition algorithm for intelligent surveillance system and mobile robot system.

  • PDF

An Observation System of Hemisphere Space with Fish eye Image and Head Motion Detector

  • Sudo, Yoshie;Hashimoto, Hiroshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.663-668
    • /
    • 2003
  • This paper presents a new observation system which is useful to observe the scene of the remote controlled robot vision. This system is composed of a motionless camera and head motion detector with a motion sensor. The motionless camera has a fish eye lens and is for observing a hemisphere space. The head motion detector has a motion sensor is for defining an arbitrary subspace of the hemisphere space from fish eye lens. Thus processing the angular information from the motion sensor appropriately, the direction of face is estimated. However, since the fisheye image is distorted, it is unclear image. The partial domain of a fish eye image is selected by head motion, and this is converted to perspective image. However, since this conversion enlarges the original image spatially and is based on discrete data, crevice is generated in the converted image. To solve this problem, interpolation based on an intensity of the image is performed for the crevice in the converted image (space problem). This paper provides the experimental results of the proposed observation system with the head motion detector and perspective image conversion using the proposed conversion and interpolation methods, and the adequacy and improving point of the proposed techniques are discussed.

  • PDF

Layered Depth Image Representation And H.264 Encoding of Multi-view video For Free viewpoint TV (자유시점 TV를 위한 다시점 비디오의 계층적 깊이 영상 표현과 H.264 부호화)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • Free viewpoint TV can provide multi-angle view point images for viewer needs. In the real world, But all angle view point images can not be captured by camera. Only a few any angle view point images are captured by each camera. Group of the captured images is called multi-view image. Therefore free viewpoint TV wants to production of virtual sub angle view point images form captured any angle view point images. Interpolation methods are known of this problem general solution. To product interpolated view point image of correct angle need to depth image of multi-view image. Unfortunately, multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, confirmed high compression performance and good quality reconstructed image.

Thermal Imaging Camera Development for Automobiles using Detail Enhancement Technique (디테일 향상 기법을 적용한 자동차용 열상카메라 개발)

  • Cho, Deog-Sang;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.687-692
    • /
    • 2018
  • In this paper, the development of an automotive thermal imaging camera providing image information for ADAS (Advanced Driver Assist System) and autonomous vehicles is described and an improved technique to enhance the details of the image is proposed. Thermal imaging cameras are used in various fields, such as the medical, industrial and military fields, for the purpose of temperature measurement and night vision. In automobiles, they are utilized for night vision systems. For their utilization in ADAS and autonomous vehicles, appropriate image resolution and enhanced detail are required for object recognition. In this study, a $640{\times}480$ resolution thermal imaging camera that can be applied to automobiles is developed and the BDE (Block-Range Detail Enhancement) technique is applied to improve the details of the image. In order to improve the image detail obtained in various driving environments, the block-range values between the target pixel and the surrounding 8 pixels are calculated and classified into 5 levels. Then, different factors are added or subtracted to obtain images with high utilization. The improved technique distinguishes the dark part of the image by the resulting temperature difference of 130mK and shows an improvement in the fine detail in both the bright and dark parts of the image. The developed thermal imaging camera using the improved detail enhancement technique is applied to a test vehicle and the results are presented.

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF