• Title/Summary/Keyword: camera image

Search Result 4,918, Processing Time 0.035 seconds

Design of UWB/WiFi Module based Wireless Transmission for Endoscopic Camera (UWB/WiFi 모듈 기반의 내시경 카메라용 무선전송 설계)

  • Shim, Dongha;Lee, Jaegon;Yi, Jaeson;Cha, Jaesang;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Ultra-wide-angle wireless endoscopes are demonstrated in this paper. The endoscope is composed of an ultra-wide-angle camera module and wireless transmission module. A lens unit with the ultra-wide FOV of 162 degrees is designed and manufactured. The lens, image sensor, and camera processor unit are packaged together in a $3{\times}3{\times}9-cm3$ case. The wireless transmission modules are implemented based on UWB- and WiFi-based platform, respectively. The UWB-based module can transmit HD video to a computer in resolution of $2048{\times}1536$ (QXGA) and the frame rate of 15 fps in MJPEG compression mode. The maximum data transfer rate reaches 41.2 Mbps. The FOV and the resolution of the endoscope is comparable to a medical-grade endoscope. The FOV and resolution is ~3X and 16X higher than that of a commercial high-performance WiFi endoscope, respectively. The WiFi-based module streams out video to a smart device with th maximum date transfer rate of 1.5 Mbps at the resolution of $640{\times}480$ (VGA) and the frame rate of 30 fps in MJPEG compression mode. The implemented components show the feasibility of cheap medical-grade wireless electronic endoscopes, which can be effectively used in u-healthcare, emergency treatment, home-healthcare, remote diagnosis, etc.

Distance measurement System from detected objects within Kinect depth sensor's field of view and its applications (키넥트 깊이 측정 센서의 가시 범위 내 감지된 사물의 거리 측정 시스템과 그 응용분야)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.279-282
    • /
    • 2017
  • Kinect depth sensor, a depth camera developed by Microsoft as a natural user interface for game appeared as a very useful tool in computer vision field. In this paper, due to kinect's depth sensor and its high frame rate, we developed a distance measurement system using Kinect camera to test it for unmanned vehicles which need vision systems to perceive the surrounding environment like human do in order to detect objects in their path. Therefore, kinect depth sensor is used to detect objects in its field of view and enhance the distance measurement system from objects to the vision sensor. Detected object is identified in accuracy way to determine if it is a real object or a pixel nose to reduce the processing time by ignoring pixels which are not a part of a real object. Using depth segmentation techniques along with Open CV library for image processing, we can identify present objects within Kinect camera's field of view and measure the distance from them to the sensor. Tests show promising results that this system can be used as well for autonomous vehicles equipped with low-cost range sensor, Kinect camera, for further processing depending on the application type when they reach a certain distance far from detected objects.

  • PDF

An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera (지상용 초분광 카메라를 이용한 소나무재선충병 감염목 분광 특성 분석)

  • Lee, Jung Bin;Kim, Eun Sook;Lee, Seung Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.665-675
    • /
    • 2014
  • In this paper spectral characteristics and spectral patterns of pine wilt disease at different development stage were analyzed in Geoje-do where the disease has already spread. Ground-based hyperspectral imaging containing hundreds of wavelength band is feasible with continuous screening and monitoring of disease symptoms during pathogenesis. The research is based on an hyperspectral imaging of trees from infection phase to witherer phase using a ground based hyperspectral camera within the area of pine wilt disease outbreaks in Geojedo for the analysis of pine wilt disease. Hyperspectral imaging through hundreds of wavelength band is feasible with a ground based hyperspectral camera. In this research, we carried out wavelength band change analysis on trees from infection phase to witherer phase using ground based hyperspectral camera and comparative analysis with major vegetation indices such as Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index (reNDVI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index 2 (ARI2). As a result, NDVI and reNDVI were analyzed to be effective for infection tree detection. The 688 nm section, in which withered trees and healthy trees reflected the most distinctions, was applied to reNDVI to judge the applicability of the section. According to the analysis result, the vegetation index applied including 688 nm showed the biggest change range by infection progress.

Development of Defect Inspection System for Polygonal Containers (다각형 용기의 결함 검사 시스템 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • In this paper, we propose the development of a defect inspection system for polygonal containers. Embedded board consists of main part, communication part, input/output part, etc. The main unit is a main arithmetic unit, and the operating system that drives the embedded board is ported to control input/output for external communication, sensors and control. The input/output unit converts the electrical signals of the sensors installed in the field into digital and transmits them to the main module and plays the role of controlling the external stepper motor. The communication unit performs a role of setting an image capturing camera trigger and driving setting of the control device. The input/output unit converts the electrical signals of the control switches and sensors into digital and transmits them to the main module. In the input circuit for receiving the pulse input related to the operation mode, etc., a photocoupler is designed for each input port in order to minimize the interference of external noise. In order to objectively evaluate the accuracy of the development of the proposed polygonal container defect inspection system, comparison with other machine vision inspection systems is required, but it is impossible because there is currently no machine vision inspection system for polygonal containers. Therefore, by measuring the operation timing with an oscilloscope, it was confirmed that waveforms such as Test Time, One Angle Pulse Value, One Pulse Time, Camera Trigger Pulse, and BLU brightness control were accurately output.

Design of Gamma Camera with Diverging Collimator for Spatial Resolution Improvement (공간분해능 향상을 위한 확산형 콜리메이터 기반의 감마카메라 설계)

  • Lee, Seung-Jae;Jang, Yeongill;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.661-666
    • /
    • 2019
  • Diverging collimators is used to obtain reduced images of an object, or to detect a wide filed-of-view (FOV) using a small gamma camera. In the gamma camera using the diverging collimators, the block scintillator, and the pixel scintillator array, gamma rays are obliquely incident on the scintillator surface when the source is located the periphery of the FOV. Therefore, the spatial resolution is reduced because it is obliquely detected in depth direction. In this study, we designed a novel system to improve the spatial resolution in the periphery of the FOV. Using a tapered crystal array to configure the scintillation pixels to coincide with the angle of the collimator's hole allows imaging to one scintillation pixel location, even if events occur to different depths. That is, even if is detected at various points in the diagonal direction, the gamma rays interact with one crystal pixel, so resolution does not degrade. The resolution of the block scintillator and the tapered crystal array was compared and evaluated through Geant4 Application for Tomographic Emission (GATE) simulation. The spatial resolution of the obtained image was 4.05 mm in the block scintillator and 2.97 mm in the tapered crystal array. There was a 26.67% spatial resolution improvement in the tapered crystal array compared to the block scintillation.

Research on Development of Construction Spatial Information Technology, using Rover's Camera System (로버 카메라 시스템을 이용한 건설공간정보화 기술의 개발 방안 연구)

  • Hong, Sungchul;Chung, Taeil;Park, Jaemin;Shin, Hyu-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.630-637
    • /
    • 2019
  • The scientific, economical and industrial values of the Moon have been increased, as massive ice-water and rare resource were founded from the lunar exploration missions. Korea and other major space agencies in the world are competitively developing the ISRU (In Situ Resource Utilization) technology to secure future lunar resource as well as to construct the lunar base. To prepare for the lunar construction, it is essential to develop the rover based construction spatial information technology to provide a decision-making aided information during the lunar construction process. Thus, this research presented the construction spatial information technology based upon rover's camera system. Specifically, the conceptual design of rover based camera system was designed for acquisition of a rover's navigation image, and lunar terrain and construction images around the rover. The reference architecture of the rover operation system was designed for computation of the lunar construction spatial information. Also, rover's localization and terrain reconstruction methods were introduced considering the characteristics of lunar surface environments. It is necessary to test and validate the conceptual design of the construction spatial information technology. Thus, in the future study, the developed rover and rover operation system will be applied to the lunar terrestrial analogue site for further improvements.

A Deep Learning Method for Cost-Effective Feed Weight Prediction of Automatic Feeder for Companion Animals (반려동물용 자동 사료급식기의 비용효율적 사료 중량 예측을 위한 딥러닝 방법)

  • Kim, Hoejung;Jeon, Yejin;Yi, Seunghyun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.263-278
    • /
    • 2022
  • With the recent advent of IoT technology, automatic pet feeders are being distributed so that owners can feed their companion animals while they are out. However, due to behaviors of pets, the method of measuring weight, which is important in automatic feeding, can be easily damaged and broken when using the scale. The 3D camera method has disadvantages due to its cost, and the 2D camera method has relatively poor accuracy when compared to 3D camera method. Hence, the purpose of this study is to propose a deep learning approach that can accurately estimate weight while simply using a 2D camera. For this, various convolutional neural networks were used, and among them, the ResNet101-based model showed the best performance: an average absolute error of 3.06 grams and an average absolute ratio error of 3.40%, which could be used commercially in terms of technical and financial viability. The result of this study can be useful for the practitioners to predict the weight of a standardized object such as feed only through an easy 2D image.

The Educational Effect of the Visualization of Heat Conduction with a Thermal Imaging Camera on Elementary School Students in Small Group Activity - Focusing on the Change of the Mental Model of Why Metal Feels Cold - (열화상 사진기로 열전도 현상을 시각화한 자료가 소집단 활동에서 초등학생에게 미치는 교육적 효과 - 금속이 차갑게 느껴지는 이유에 대한 정신모형 변화를 중심으로 -)

  • Lee, Ga Ram;Ju, Eunjeong;Park, Il-Woo
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.569-591
    • /
    • 2022
  • This study aims to investigate the educational effects of the visualization of heat conduction using a thermal imaging camera on elementary school students through small group activities. It endeavors to explain the reason for why metal feels cold. The scholars conducted in-depth interviews before and after learning the unit "Temperature and Heat" for four students in fifth grade in Seoul. Recorded video and audio materials of the activities, their outputs, and journals of scholars were collected, reviewed, and analyzed. The result demonstrated that visualizing heat conduction using the thermal imaging camera aroused curiosity and provided an opportunity for sophisticated observation and integrated thinking. In addition, the visualization of the heat conduction phenomenon was used as the basis for interpretation and rebuttal for active communication during the small group activities of the students. Consequently, the students changed their non-scientific beliefs, refined their knowledge, and developed their mental models through a small group discussion based on a thermal image video.

A Study on the Design and Implementation of a Camera-Based 6DoF Tracking and Pose Estimation System (카메라 기반 6DoF 추적 및 포즈 추정 시스템의 설계 및 구현에 관한 연구)

  • Do-Yoon Jeong;Hee-Ja Jeong;Nam-Ho Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.53-59
    • /
    • 2024
  • This study presents the design and implementation of a camera-based 6DoF (6 Degrees of Freedom) tracking and pose estimation system. In particular, we propose a method for accurately estimating the positions and orientations of all fingers of a user utilizing a 6DoF robotic arm. The system is developed using the Python programming language, leveraging the Mediapipe and OpenCV libraries. Mediapipe is employed to extract keypoints of the fingers in real-time, allowing for precise recognition of the joint positions of each finger. OpenCV processes the image data collected from the camera to analyze the finger positions, thereby enabling pose estimation. This approach is designed to maintain high accuracy despite varying lighting conditions and changes in hand position. The proposed system's performance has been validated through experiments, evaluating the accuracy of hand gesture recognition and the control capabilities of the robotic arm. The experimental results demonstrate that the system can estimate finger positions in real-time, facilitating precise movements of the 6DoF robotic arm. This research is expected to make significant contributions to the fields of robotic control and human-robot interaction, opening up various possibilities for future applications. The findings of this study will aid in advancing robotic technology and promoting natural interactions between humans and robots.

Study on Glomerular Filtration Rate comparison according to renal depth measurement of kidney donors (신 공여자에서 신장 깊이 측정에 따른 사구체여과율의 비교에 관한 고찰)

  • Lee, Han Wool;Park, Min Soo;Kang, Chun Goo;Cho, Seok Won;Kim, Joo Yeon;Kwon, O Jun;Lim, Han Sang;Kim, Jae Sam;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.48-56
    • /
    • 2014
  • Purpose $^{99m}Tc$-DTPA renal scintigraphy serves as a key indicator to measure a kidney donor's Glomerular Filtration Rate (GFR) and determine the possibility of kidney transplant. The Gates method utilized to measure GFR considers 3 variables of renal depth, injection dose, and net kidney counts. In this research, we seek to compare changes in kidney donors' GFR according to renal depth measurement methods of the 3 variables. Materials and Methods We investigated 32 kidney donors who had visited the hospital from October, 2013 to March, 2014 and received abdominal CT and $^{99m}Tc$-DTPA GFR examination. With the cross-section image of the CT and the lateral image from a gamma camera, we measured the renal depth and compared with renal depth calculation equations-Tonnesen, Taylor, and Itoh methods. Renal depth-specific GFR was calculated by using Xeleris Ver. 2.1220 of GE. Then the results were compared with MDRD (Modification of Diet Renal Disease) GFRs based on serum creatinine level. Results The renal depths measured based on the CT and gamma camera images showed high correlation. Tonessen equation gave the lowest GFR value while the value calculated by using the renal depth of CT image was the highest with a 16.62% gap. MDRD GFR showed no statistically significant difference among values calculated through Taylor, Itoh, CT and gamma camera renal depth application (P>0.05), but exhibited a statistically significant change in the value based on Tonnesen equation (P<0.05). Conclusion This research has found that, in GFR evaluation in kidney donors by utilizing $^{99m}Tc$-DTPA, Tonnesen equation-based Gates method underestimated the value than the MDRD GFR. Therefore, if a MDRD GFR value shows a huge difference from the actual examination value, using an image-based renal depth measurement, instead of Tonnesen equation applied to Gates method, is expected to give an accurate GFR value to kidney donors.

  • PDF