• Title/Summary/Keyword: camera image

Search Result 4,918, Processing Time 0.031 seconds

Indoor environment recognition based on depth image (깊이 영상 기반 실내 공간 인식)

  • Kim, Su-Kyung;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we propose a method using an image received by the depth camera in order to separate the wall in a three-dimensional space indoor environment. Results of the paper may be used to provide valuable information on the three-dimensional space. For example, they may be used to recognize the indoor space, to detect adjacent objects, or to project a projector on the wall. The proposed method first detects a normal vector at each point by using the three dimensional coordinates of points. The normal vectors are then clustered into several groups according to similarity. The RANSAC algorithm is applied to separate out planes. The domain knowledge helps to determine the wall among planes in an indoor environment. This paper concludes with experimental results that show performance of the proposed method in various experimental environment.

Development of SD-OCT for Imaging the in vivo Human Tympanic Membrane

  • Cho, Nam-Hyun;Jung, Un-Sang;Kwon, Hyeong-Il;Jeong, Hyo-Sang;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.74-77
    • /
    • 2011
  • We report a novel extension of 840 nm wavelength- based spectral domain optical tomography to in vivo/real-time human middle ear diagnosis. The system was designed to access the middle ear region with a specifically dedicated handheld probe. The real-time displaying feature was mandatory for in vivo imaging human subject with the handheld probe, and the system could provide about 20 frames per second for 2048 pixels by 1000 A-scans without using any graphics process units under the Labview platform. The inner ear structure of a healthy male volunteer was imaged with the developed system with the axial and lateral resolutions of $15\;{\mu}m$ and $30\;{\mu}m$, respectively. The application of the OCT technology to early diagnose otitis media(OM) is very promising and could be another extensive branch in the OCT field because it provides the depth resolved image including tympanic membrane (TM) and structures below TM whereas the conventional otoscope technique only gives asurface image of the TM.

Updating of Digital Map using Digital Image and LIDAR (디지털 영상과 LIDAR 자료를 이용한 수치지도 갱신)

  • Yun, Bu-Yeol;Hong, Jung-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.87-97
    • /
    • 2006
  • LIDAR(Light Detection and Ranging) is a new technology for obtaining DEM(Digital Elevation Model)ewith high density and high point acuracy. As LIDAR emerged, DEM could be developed in the earthsurface more efficiently and more economically, compared to the conventional aerial photogrametry.In this study, a digital camera is simultaneously used in combined LIDAR surveying, and acquired digitial image and DEM produce digital orthoimage. In this process, methods of combining sensor andorthoimage, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; onewith a few GCP and the other without them. The produced maps can be used to corect or revised1:1,000 or 1:5,000 scale maps acordingly.

  • PDF

A Mask Wearing Detection System Based on Deep Learning

  • Yang, Shilong;Xu, Huanhuan;Yang, Zi-Yuan;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.159-166
    • /
    • 2021
  • COVID-19 has dramatically changed people's daily life. Wearing masks is considered as a simple but effective way to defend the spread of the epidemic. Hence, a real-time and accurate mask wearing detection system is important. In this paper, a deep learning-based mask wearing detection system is developed to help people defend against the terrible epidemic. The system consists of three important functions, which are image detection, video detection and real-time detection. To keep a high detection rate, a deep learning-based method is adopted to detect masks. Unfortunately, according to the suddenness of the epidemic, the mask wearing dataset is scarce, so a mask wearing dataset is collected in this paper. Besides, to reduce the computational cost and runtime, a simple online and real-time tracking method is adopted to achieve video detection and monitoring. Furthermore, a function is implemented to call the camera to real-time achieve mask wearing detection. The sufficient results have shown that the developed system can perform well in the mask wearing detection task. The precision, recall, mAP and F1 can achieve 86.6%, 96.7%, 96.2% and 91.4%, respectively.

A Study on Autonomous Cavitation Image Recognition Using Deep Learning Technology (딥러닝 기술을 이용한 캐비테이션 자동인식에 대한 연구)

  • Ji, Bahan;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.105-111
    • /
    • 2021
  • The main source of underwater radiated noise of ships is cavitation generated by propeller blades. After the Cavitation Inception Speed (CIS), noise level at all frequencies increases severely. In determining the CIS, it is based on the results observed with the naked eye during the model test, however accuracy and consistency of CIS values are becoming practical issues. This study was carried out with the aim of developing a technology that can automatically recognize cavitation images using deep learning technique based on a Convolutional Neural Network (CNN). Model tests on a three-dimensional hydrofoil were conducted at a cavitation tunnel, and tip vortex cavitation was strictly observed using a high-speed camera to obtain analysis data. The results show that this technique can be used to quantitatively evaluate not only the CIS, but also the amount and rate of cavitation from recorded images.

A Study on Finding the Rail Space in Elevators Using Matched Filter

  • Song, Myong-Lyol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.57-65
    • /
    • 2019
  • In this paper, we study on finding the rail space in elevators by analyzing each image captured with CCD camera. We propose a method that applies one-dimensional matched filter to the pixels of a selected search space in the vertical line at a horizontal position and decides the position with the thickness of the space being represented by a black thick line in captured images. The pattern similarity representing how strongly the associated image pixels resemble with the thick line is defined and calculated with respect to each position along the vertical line of pixels. The position and thickness of the line are decided from the point having the maximum in pattern similarity graph. In the experiments of the proposed method under different illuminational conditions, it is observed that all the pattern similarity graphs show similar shape around door area independent of the conditions and the method can effectively detect the rail space if the rails are illuminated with even weak light. The method can be used for real-time embedded systems because of its simple algorithm, in which it is implemented in simple structure of program with small amount of operations in comparison with the conventional approaches using Canny edge detection and Hough transform.

Wood Species Classification Utilizing Ensembles of Convolutional Neural Networks Established by Near-Infrared Spectra and Images Acquired from Korean Softwood Lumber

  • Yang, Sang-Yun;Lee, Hyung Gu;Park, Yonggun;Chung, Hyunwoo;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.385-392
    • /
    • 2019
  • In our previous study, we investigated the use of ensemble models based on LeNet and MiniVGGNet to classify the images of transverse and longitudinal surfaces of five Korean softwoods (cedar, cypress, Korean pine, Korean red pine, and larch). It had accomplished an average F1 score of more than 98%; the classification performance of the longitudinal surface image was still less than that of the transverse surface image. In this study, ensemble methods of two different convolutional neural network models (LeNet3 for smartphone camera images and NIRNet for NIR spectra) were applied to lumber species classification. Experimentally, the best classification performance was obtained by the averaging ensemble method of LeNet3 and NIRNet. The average F1 scores of the individual LeNet3 model and the individual NIRNet model were 91.98% and 85.94%, respectively. By the averaging ensemble method of LeNet3 and NIRNet, an average F1 score was increased to 95.31%.

Parking Space Detection based on Camera and LIDAR Sensor Fusion (카메라와 라이다 센서 융합에 기반한 개선된 주차 공간 검출 시스템)

  • Park, Kyujin;Im, Gyubeom;Kim, Minsung;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.170-178
    • /
    • 2019
  • This paper proposes a parking space detection method for autonomous parking by using the Around View Monitor (AVM) image and Light Detection and Ranging (LIDAR) sensor fusion. This method consists of removing obstacles except for the parking line, detecting the parking line, and template matching method to detect the parking space location information in the parking lot. In order to remove the obstacles, we correct and converge LIDAR information considering the distortion phenomenon in AVM image. Based on the assumption that the obstacles are removed, the line filter that reflects the thickness of the parking line and the improved radon transformation are applied to detect the parking line clearly. The parking space location information is detected by applying template matching with the modified parking space template and the detected parking lines are used to return location information of parking space. Finally, we propose a novel parking space detection system that returns relative distance and relative angle from the current vehicle to the parking space.

CCTV-Based Multi-Factor Authentication System

  • Kwon, Byoung-Wook;Sharma, Pradip Kumar;Park, Jong-Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.904-919
    • /
    • 2019
  • Many security systems rely solely on solutions based on Artificial Intelligence, which are weak in nature. These security solutions can be easily manipulated by malicious users who can gain unlawful access. Some security systems suggest using fingerprint-based solutions, but they can be easily deceived by copying fingerprints with clay. Image-based security is undoubtedly easy to manipulate, but it is also a solution that does not require any special training on the part of the user. In this paper, we propose a multi-factor security framework that operates in a three-step process to authenticate the user. The motivation of the research lies in utilizing commonly available and inexpensive devices such as onsite CCTV cameras and smartphone camera and providing fully secure user authentication. We have used technologies such as Argon2 for hashing image features and physically unclonable identification for secure device-server communication. We also discuss the methodological workflow of the proposed multi-factor authentication framework. In addition, we present the service scenario of the proposed model. Finally, we analyze qualitatively the proposed model and compare it with state-of-the-art methods to evaluate the usability of the model in real-world applications.

A Study on the Improvement of Hydrogen Detection Inspection Method of Hydrogen Cylinder on Hydrogen Bus (수소버스 사용 내압용기 수소검출량 검사방법 개선을 위한 연구)

  • Kim, Hyunjun;Weo, Unseok;Jo, Hyunwoo;Lee, Hyeoncheol;Hwang, Taejun;Lee, Hosang;Ryu, Ikhui;Choi, Sookwang;Oh, Youngkyu;Park, Sungwook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2021
  • As hydrogen is classified as an eco-friendly fuel, vehicles using hydrogen fuel are being developed worldwide. Vehicle fuel hydrogen is stored in cylinders at 70 MPa, so there is a high risk of explosion. Therefore, it is important to inspect hydrogen cylinders in used-vehicles. This study was conducted to improve the inspection method of the cylinders currently mounted on used-hydrogen buses. The inspection method is an image analysis method using a camera. Calcaulation algorithm was developed to quantitatively chech the amount of hydrogen leakage by the image method. As a result of adding a contact angle element to the calculation algorithm suggested by the GTR regulation and comparing it with the experimental data of the GTR regulation, the algorithm reliability was 94%, which secured similarity.