• Title/Summary/Keyword: camera image

Search Result 4,918, Processing Time 0.03 seconds

Studies of vision monitoring system using a background separation algorithm during radiotherapy (방사선 치료시 배경분리알고리즘을 이용한 비젼모니터링 시스템에 대한 연구)

  • Park, Kiyong;Choi, Jaehyun;Park, Jeawon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.359-366
    • /
    • 2016
  • The normal tissue in radiation therapy, to minimize radiation, it is most important to maximize local tumor control rates in intensive research the exact dose to the tumor sites. Therefore, the initial, therapist accuracy of detecting movement of the patient fatigue therapist has been a problem that is weighted down directly. Also, by using a web camera, a difference value between the image to be updated to the reference image is calculated, if the result exceeds the reference value, using the system for determining the motion has occurred. However, this system, it is not possible to quantitatively analyze the movement of the patient, the background is changed when moving the treatment bed in the co-therapeutic device was not able to sift the patient. In this paper, using a alpah(${\alpha}$) filter index is an attempt to solve these limitations points, quantifies the movement of the patient, by separating a background image of the patient and treatment environment, and movement of the patient during treatment It senses only, it was possible to reduce the problems due to patient movement.

Vehicle Tracking using Euclidean Distance (유클리디안 척도를 이용한 차량 추적)

  • Kim, Gyu-Yeong;Kim, Jae-Ho;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1293-1299
    • /
    • 2012
  • In this paper, a real-time vehicle detection and tracking algorithms is proposed. The vehicle detection could be processed using GMM (Gaussian Mixture Model) algorithm and mathematical morphological processing with HD CCTV camera images. The vehicle tracking based on separated vehicle object was performed using Euclidean distance between detected object. In more detail, background could be estimated using GMM from CCTV input image signal and then object could be separated from difference image of the input image and background image. At the next stage, candidated objects were reformed by using mathematical morphological processing. Finally, vehicle object could be detected using vehicle size informations dependent on distance and vehicle type in tunnel. The vehicle tracking performed using Euclidean distance between the objects in the video frames. Through computer simulation using recoded real video signal in tunnel, it is shown that the proposed system works well.

Performance Comparison of Implementation Technologies for Image Quality Enhancement Operations on Android Platforms (Android 플랫폼에서 구현 기술에 따른 화질 개선 연산 성능 비교)

  • Lee, Ju-Ho;Lee, Goo-Yeon;Jeong, Choong-Kyo
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • As mobiles devices with high-spec camera built in are used widely, the visual quality enhancement of the high-resolution images turns out to be one of the key capabilities of the mobile devices. Due to the limited computational resources of the mobile devices and the size of the high-resolution images, we should choose an image processing algorithm not too complex and use an efficient implementation technology. One of the simple and widely used image quality enhancement algorithms is contrast stretching. Java libraries running on a virtual machine, JNI (Java Native Interface) based native C/C++, and NEONTM SIMD (Single Instruction Multiple Data) are common implementation technologies in the case of Android smartphones. Using these three implementation technologies, we have implemented two image contrast stretching algorithms - linear and equalized, and compared the computation times. The native C/C++ and the NEONTM SIMD outperformed the native C/C++ implementation by 56-78 and 50-76 time faster respectively.

A Study on convergence video system trough Floating Hologram (플로팅 홀로그램을 통한 융복합 영상시스템 연구)

  • Oh, Seung-Hwan
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.397-402
    • /
    • 2020
  • Hologram can be categorized into analog and digital hologram but there's a clear limitation in expensive equipment and content realization for ordinary people to realize. In addition, it's required to conduct study on hologram contents with interaction added, escaping out of exiting stable format like endlessly repetitive contents or passive view through specific video. Therefore, this article aims to suggest fusion image system, especially focusing on floating hologram among similar holograms. Eight elements of hologram interaction are as follows: height of camera in a three-dimensional space, interval between 3D model, overlapped model, scale, animation, position, color and 3D model change. For the floating hologram, the audience can control by themselves in real time, the popular, active hologram contents-making methodology is suggested by making the best use of fusion image system and making floating hologram easily without using expensive hologram equipment. The image system developed in actual exhibition and feedback should be complemented to develop better hologram image system.

A Study On Face Feature Points Using Active Discrete Wavelet Transform (Active Discrete Wavelet Transform를 이용한 얼굴 특징 점 추출)

  • Chun, Soon-Yong;Zijing, Qian;Ji, Un-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.7-16
    • /
    • 2010
  • Face recognition of face images is an active subject in the area of computer pattern recognition, which has a wide range of potential. Automatic extraction of face image of the feature points is an important step during automatic face recognition. Whether correctly extract the facial feature has a direct influence to the face recognition. In this paper, a new method of facial feature extraction based on Discrete Wavelet Transform is proposed. Firstly, get the face image by using PC Camera. Secondly, decompose the face image using discrete wavelet transform. Finally, we use the horizontal direction, vertical direction projection method to extract the features of human face. According to the results of the features of human face, we can achieve face recognition. The result show that this method could extract feature points of human face quickly and accurately. This system not only can detect the face feature points with great accuracy, but also more robust than the tradition method to locate facial feature image.

Image Recognition Using Colored-hear Transformation Based On Human Synesthesia (인간의 공감각에 기반을 둔 색청변환을 이용한 영상 인식)

  • Shin, Seong-Yoon;Moon, Hyung-Yoon;Pyo, Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, we propose colored-hear recognition that distinguishing feature of synesthesia for human sensing by shared vision and specific sense of hearing. We perceived what potential influence of human's structured object recognition by visual analysis through the camera, So we've studied how to make blind persons can feel similar vision of real object. First of all, object boundaries are detected in the image data representing a specific scene. Then, four specific features such as object location in the image focus, feeling of average color, distance information of each object, and object area are extracted from picture. Finally, mapping these features to the audition factors. The audition factors are used to recognize vision for blind persons. Proposed colored-hear transformation for recognition can get fast and detail perception, and can be transmit information for sense at the same time. Thus, we were get a food result when applied this concepts to blind person's case of image recognition.

  • PDF

A Study of the Machine Vision Algorithm for Quality Control of Concrete Surface Grinding Equipment (콘크리트 표면절삭 장비의 품질관리를 위한 머신비전 알고리즘 개발)

  • Kim, Jeong-Hwan;Seo, Jong-Won;Song, Soon-Ho;Lee, Won-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.983-986
    • /
    • 2007
  • Concrete surface grinding is required for flatness and adhesiveness of concrete surface. The procedure is, however, labor intensive and has a hazardous work condition. Also, the productivity and the quality of concrete surface grinding depend on the levels of worker. Thus, the development of remote controlled concrete surface grinding equipment is necessary to prevent the environmental pollution and to protect the workers from hazardous work condition. However, it is difficult to evaluate the grinded surface objectively in a remote controlled system. The machine vision system developed in this study takes the images of grinded surface with the network camera for image processing. Then, by representing the quality test results to the graphic MMI program of the remote control station, the quality control system is constructed. The machine vision algorithm means the image processing algorithm of grinded concrete surface and this paper presents the objective quality control standard of grinded concrete surface through the application of the suggested algorithm.

  • PDF

A Study on Face Recognition using Neural Networks and Characteristics Extraction based on Differential Image and DCT (차영상과 DCT 기반 특징 추출과 신경망을 이용한 얼굴 인식에 관한 연구)

  • 임춘환;고낙용;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1549-1557
    • /
    • 1999
  • In this paper, we propose a face recognition algorithm based on the differential image method-DCT This algorithm uses neural networks which is flexible for noise. Using the same condition (same luminous intensity and same distance from the fixed CCD camera to human face), we have captured two images. One doesn't contain human face. The other contains human face. Differential image method is used to separate the second image into face region and background region. After that, we have extracted square area from the face region, which is based on the edge distribution. This square region is used as the characteristics region of human face. It contains the eye bows, the eyes, the nose, and the mouth. After executing DCT for this square region, we have extracted the feature vectors. The feature vectors were normalized and used as the input vectors of the neural network. Simulation results show 100% recognition rate when face images were learned and 92.25% recognition rate when face images weren't learned for 30 persons.

  • PDF

Performance Analysis of Face Recognition by Face Image resolutions using CNN without Backpropergation and LDA (역전파가 제거된 CNN과 LDA를 이용한 얼굴 영상 해상도별 얼굴 인식률 분석)

  • Moon, Hae-Min;Park, Jin-Won;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • To satisfy the needs of high-level intelligent surveillance system, it shall be able to extract objects and classify to identify precise information on the object. The representative method to identify one's identity is face recognition that is caused a change in the recognition rate according to environmental factors such as illumination, background and angle of camera. In this paper, we analyze the robust face recognition of face image by changing the distance through a variety of experiments. The experiment was conducted by real face images of 1m to 5m. The method of face recognition based on Linear Discriminant Analysis show the best performance in average 75.4% when a large number of face images per one person is used for training. However, face recognition based on Convolution Neural Network show the best performance in average 69.8% when the number of face images per one person is less than five. In addition, rate of low resolution face recognition decrease rapidly when the size of the face image is smaller than $15{\times}15$.

A Real-time Copper Foil Inspection System using Multi-thread (다중 스레드를 이용한 실시간 동판 검사 시스템)

  • Lee Chae-Kwang;Choi Dong-Hyuk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.499-506
    • /
    • 2004
  • The copper foil surface inspection system is necessary for the factory automation and product quality. The developed system is composed of the high speed line scan camera, the image capture board and the processing computer. For the system resource utilization and real-time processing, multi-threaded architecture is introduced. There are one image capture thread, 2 or more defect detection threads, and one defect communication thread. To process the high-speed input image data, the I/O overlap is used through the double buffering. The defect is first detected by the predetermined threshold. To cope with the light irregularity, the compensation process is applied. After defect detection, defect type is classified with the defect width, eigenvalue ratio of the defect covariance matrix and gray level of defect. In experiment, for high-speed input image data, real-time processing is possible with multi -threaded architecture, and the 89.4% of the total 141 defects correctly classified.