• Title/Summary/Keyword: camel milk

Search Result 12, Processing Time 0.027 seconds

A Review on Camel Milk Composition, Techno-Functional Properties and Processing Constraints

  • Muhammad Asif Arain;Hafiz Muhammad Salman;Mehboob Ali;Gul Bahar Khaskheli;Ghulam Shabir Barham;Illahi Bakhash Marghazani;Shabbir Ahmed
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.739-757
    • /
    • 2024
  • Camel milk plays a critical role in the diet of peoples belongs to the semi-arid and arid regions. Since prehistoric times, camel milk marketing was limited due to lacking the processing facilities in the camel-rearing areas, nomads practiced the self-consumption of raw and fermented camel milk. A better understanding of the techno-functional properties of camel milk is required for product improvement to address market and customer needs. Despite the superior nutraceutical and health promoting potential, limited camel dairy products are available compared to other bovines. It is a challenging impetus for the dairy industry to provide diversified camel dairy products to consumers with superior nutritional and functional qualities. The physicochemical behavior and characteristics of camel milk is different than the bovine milk, which poses processing and technological challenges. Traditionally camel milk is only processed into various fermented and non-fermented products; however, the production of commercially important dairy products (cheese, butter, yogurt, and milk powder) from camel milk still needs to be processed successfully. Therefore, the industrial processing and transformation of camel milk into various products, including fermented dairy products, pasteurized milk, milk powder, cheese, and other products, require the development of new technologies based on applied research. This review highlights camel milk's processing constraints and techno-functional properties while presenting the challenges associated with processing the milk into various dairy products. Future research directions to improve product quality have also been discussed.

Comparative Study of Camel Milk from Different Areas of Xinjiang Province in China

  • Jing Miao;Shuang Xiao;Jun Wang
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.674-684
    • /
    • 2023
  • Xinjiang province is the main camel feeding area in China with a large square, and camel milk from different areas have different qualities. By now, there are few reports about the quality of camel milk from different areas of Xinjiang province in China. In this study, seven batches of camel milk and one batch of cow milk were collected, and the contents of fat, protein, lactose, total solid, and nonfat milk solid of these milk samples were determined, as well as the contents of lysozyme and vitamin C. All samples were scored and compared by principal component analysis score and comprehensive weighted multi-index score. As the results, camel milk from different areas showed different contents of fat (4.62%-7.02%), protein (3.34%-3.95%), lactose (3.85%-4.79%), total solid (13.59%-17.00%), nonfat milk solid (8.55%-9.73%), vitamin C (12.10-41.25 ㎍/mL), and lysozyme (8.70-22.80 ㎍/mL), as well as different qualities. This variation would help people to know more about quanlity of camel milk in Xinjiang province. Camel milk from Jeminay showed the best quality, and then followed by camel milk from Fukang, Changji, and Fuhai, while cow milk showed the lowest score. Therefore, Jeminay is the most suitable place for grazing camels. Our findings show the different qualities of camel milk in different distribution areas of Xinjiang province, and provide an insight for the evaluation of camel milk. In the present study, only seven components in camel milk were determined, many other factors, such as cfu, mineral, and other vitamins, have not been considered.

A Review on Processing Opportunities for the Development of Camel Dairy Products

  • Muhammad Asif Arain;Sundus Rasheed;Arham Jaweria;Gul Bahar Khaskheli;Ghulam Shabir Barham;Shabbir Ahmed
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.383-401
    • /
    • 2023
  • Camel milk has a significant and pivotal role in the diet of people residing in semi-arid and arid regions. Ever since ancient times, marketing of camel milk has remained insignificant due to nonexistence of processing amenities in the camel nurturing areas, hence the utilization of unprocessed camel milk has continuously remained limited at family level by the nomads. Due to the superior medicinal values and health promoting effects, incredible growth in the demand of camel milk and dairy products have been noticed all over the world during last two decades. Such emergence has led dairy industry to provide diversified camel dairy products to the consumers with superior nutritional and functional qualities. In contrast to bovine, very few food products derived from camel milk are available in the present market. With the advancements in food processing interventions, a wide range of dairy and non-dairy products could be obtained from camel milk, including milk powder, cheese, yogurt, ice cream, and even chocolate. In some regions, camel milk is used for traditional dishes such as fermented milk, camel milk tea, or as a base for soups and stews. Current review highlights the processing opportunities regarding the transformation of camel milk into various dairy products via decreasing the inherent functionality that could be achieved by optimization of processing conditions and alteration of chemical composition by using fortification method. Additionally, future research directions could be devised to improve the product quality.

Preparation of Camel Milk Liposome and Its Anti-Aging Effects (낙타유가 함유된 리포좀 제조 및 피부 노화 개선 효과 연구)

  • Choi, Sung Kyu;Park, Kun Dong;Kim, Da Ae;Lee, Dae Woo;Kim, Yun Jeong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2014
  • In this study, in order to know the application for cosmetic ingredient, the liposome contained camel milk was prepared and tested in human skin fibroblast. Collagen and hyaluronan synthase-3 (HAS-3) gene expression were increased by camel milk liposome in a concentration-dependent manner, whereas elastase activity and matrix metalloproteinase (MMP)-1 gene expression were inhibited. We also found that camel milk liposome regenerated UVB-damaged fibroblast. As the results, we suggest that the liposome contained camel milk is applicable for a potential cosmetic ingredient to improve anti-aging effect.

In Vitro Apoptosis Triggering in the BT-474 Human Breast Cancer Cell Line by Lyophilised Camel's Milk

  • Hasson, Sidgi S.A.A;Al-Busaidi, Juma Zaid;Al-Qarni, Zahra A.M.;Rajapakse, S.;Al-Bahlani, Shadia;Idris, Mohamed Ahmed;Sallam, Talal A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6651-6661
    • /
    • 2015
  • Breast cancer is a global health concern and is a major cause of death among women. In Oman, it is the most common cancer in women, with an incidence rate of 15.6 per 100,000 Omani females. Various anticancer remedies have been discovered from natural products in the past and the search is continuing for additional examples. Cytotoxic natural compounds may have a major role in cancer therapy either in potentiating the effect of chemotherapy or reducing its harmful effects. Recently, a few studies have reported advantages of using crude camel milk in treating some forms of cancer. However, no adequate data are available on the lyophilised camel's milk responsibility for triggering apoptosis and oxidative stress associated with human breast cancer. The present study aimed to address the role of the lyophilised camel's milk in inducing proliferation repression of BT-474 and HEp-2 cells compared with the non-cancer HCC1937 BL cell line. Lyophilized camel's milk fundamentally repressed BT-474 cells growth and proliferation through the initiation of either the intrinsic and extrinsic apoptotic pathways as indicated by both caspase-3 mRNA and its action level, and induction of death receptors in BT-474 but not the HEp-2 cell line. In addition, lyophilised camel's milk enhanced the expression of oxidative stress markers, heme-oxygenase-1 and reactive oxygen species production in BT-474 cells. Increase in caspase-3 mRNA levels by the lyophilised camel's milk was completely prevented by the actinomycin D, a transcriptional inhibitor. This suggests that lyophilized camel's milk increased newly synthesized RNA. Interestingly,it significantly (p<0.003) repressed the growth of HEp-2 cells and BT-474 cells after treatment for 72 hours while 24 hours treatment repressed BT-474 cells alone. This finding suggests that the lyophilised camel's milk might instigate apoptosis through initiation of an alternative apoptotic pathway.

Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species

  • Rafiq, Saima;Huma, Nuzhat;Pasha, Imran;Sameen, Aysha;Mukhtar, Omer;Khan, Muhammad Issa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1022-1028
    • /
    • 2016
  • Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat ($6.82%{\pm}0.04%$), solid-not-fat ($11.24%{\pm}0.02%$), total solids ($18.05%{\pm}0.05%$), protein ($5.15%{\pm}0.06%$) and casein ($3.87%{\pm}0.04%$) contents followed by buffalo milk. Maximum whey proteins were observed in camel milk ($0.80%{\pm}0.03%$), buffalo ($0.68%{\pm}0.02%$) and sheep ($0.66%{\pm}0.02%$) milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82), cow (r = 0.88), sheep (r = 0.86) and goat milk (r = 0.98). The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow ($108{\pm}2.3mg/g$), camel ($96{\pm}2.2mg/g$) and buffalo ($90{\pm}2.4mg/g$) milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products.

Current approaches for assisted oocyte maturation in camels

  • Saadeldin, Islam M.;Cho, Jongki
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Camel (camelus dromedarius) is a unique large mammalian species that can survive harsh environmental conditions and produce milk, meat, and wool. Camel reproduction is inferior when compared to other farm animal species such as cattle and sheep. Several trials have been reported to increase camel reproduction and production through assisted reproductive techniques (ARTs) such as in vitro fertilization and cloning. For these reasons, obtaining enough mature oocytes is a cornerstone for ARTs. This demand would be improved by the oocyte in vitro maturation (IVM) systems. In this review, the current approaches and views from different laboratories using ARTs and the IVM to produce embryos in vitro in camel species. For the last two decades, conventional IVM system was the common approach, however, recently the bi-phasic IVM system has been introduced and showed promising improvement in IVM of camel oocytes. Detailed studies are needed to understand camel meiosis and IVM to efficiently increase the production of this species.

Characterization and Comparative Evaluation of Milk Protein Variants from Pakistani Dairy Breeds

  • Yasmin, Iqra;Iqbal, Rabia;Liaqat, Atif;Khan, Wahab Ali;Nadeem, Muhamad;Iqbal, Aamir;Chughtai, Muhammad Farhan Jahangir;Rehman, Syed Junaid Ur;Tehseen, Saima;Mehmood, Tariq;Ahsan, Samreen;Tanweer, Saira;Naz, Saima;Khaliq, Adnan
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.689-698
    • /
    • 2020
  • The aim of study was to scrutinize the physicochemical and protein profile of milk obtained from local Pakistani breeds of milch animals such as Nilli-Ravi buffalo, Sahiwal cow, Kajli sheep, Beetal goat and Brela camel. Physicochemical analysis unveiled maximum number of total solids and protein found in sheep and minimum in camel. Buffalo milk contains the highest level of fat (7.45%) while camel milk contains minimum (1.94%). Ash was found maximum in buffalo (0.81%) and sheep (0.80%) while minimum in cow's milk (0.71%). Casein and whey proteins were separated by subjecting milk to isoelectric pH and then analyzed through sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed heterogeneity among these species. Different fractions including αS1, αS2, κ-casein, β-casein and β-lactoglobulen (β-Lg) were identified and quantitatively compared in all milk samples. Additionally, this electrophoretic method after examining the number and strength of different protein bands (αS1, αS2, β-CN, α-LAC, BSA, and β-Lg, etc.), was helpful to understand the properties of milk for different processing purposes and could be successfully applied in dairy industry. Results revealed that camel milk was best suitable for producing allergen free milk protein products. Furthermore, based on the variability of milk proteins, it is suggested to clarify the phylogenetic relationships between different cattle breeds and to gather the necessary data to preserve the genetic fund and biodiversity of the local breeds. Thus, the study of milk protein from different breed and species has a wide range of scope in producing diverse protein based dairy products like cheese.

Bioactive Properties of Novel Probiotic Lactococcus lactis Fermented Camel Sausages: Cytotoxicity, Angiotensin Converting Enzyme Inhibition, Antioxidant Capacity, and Antidiabetic Activity

  • Ayyash, Mutamed;Olaimat, Amin;Al-Nabulsi, Anas;Liu, Shao-Quan
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.155-171
    • /
    • 2020
  • Fermented products, including sausages, provide several health benefits, particularly when probiotics are used in the fermentation process. This study aimed to examine the cytotoxicity (against Caco-2 and MCF-7 cell lines), antihypertensive activity via angiotensin-converting enzyme (ACE) inhibition, antioxidant capacity, antidiabetic activity via α-amylase and α-glucosidase inhibition, proteolysis rate, and oxidative degradation of fermented camel and beef sausages in vitro by the novel probiotic Lactococcus lactis KX881782 isolated from camel milk. Moreover, camel and beef sausages fermented with commercial starter culture alone were compared to those fermented with commercial starter culture combined with L. lactis. The degree of hydrolysis, antioxidant capacity, cytotoxicity against Caco-2 and MCF-7, α-amylase, α-glucosidase, and ACE inhibitory activities were higher (p<0.05) in fermented camel sausages than beef sausages. In contrast, the water and lipid peroxidation activity were lower (p<0.05) in camel sausages than beef sausages. L. lactis enhanced the health benefits of the fermented camel sausages. These results suggest that camel sausage fermented with the novel probiotic L. lactis KX881782 could be a promising functional food that relatively provides several health benefits to consumers compared with fermented beef sausage.

Factors affecting in vitro embryo production: insights into dromedary camel

  • Moawad, Adel R.;Ghoneim, Ibrahim M.;Darwish, Gamal M.;Badr, Magdy R.;El-Badry, Diya A.;EL-Wishy, Abou Bakr A.
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.119-141
    • /
    • 2020
  • The Dromedary camel (Camelus dromedaries) is an important species because of its ability to produce good quality meat, milk, and fibers under harsh environmental conditions. Camels are also crucial for transportation, racing, and as draft animals in agriculture. Therefore, dromedary camels play a critical role in the economy for millions of people living in the arid part of the world. The inherent capability of camels to produce meat and milk is highly correlated with their reproductive performance. Compared with other domestic species, the reproductive efficiency in camelids is low. Although recent reproductive technologies such as in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) have been successfully applied to camelids and the birth of live offspring following these technologies has been reported; in vitro embryo production (IVP) has lagged in this species. The development of the IVP system for dromedary camels may be a useful tool for the genetic improvement of this species. IVP in farm animals includes three main steps; in vitro maturation (IVM) of an oocyte, IVF of a matured oocyte, and in vitro culture (IVC) of fertilized oocyte up to the blastocyst stage. This review aims to summarize various factors that influence oocyte quality, IVM, and in vitro embryo development in dromedary camel.