• Title/Summary/Keyword: calorimeter

Search Result 732, Processing Time 0.022 seconds

A Study on the Cone Calorimeter Evaluation Method of Sandwich Panels (복합자재 콘칼로리미터평가방법에 대한 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • Fires in buildings built using sandwich panels are difficult to extinguish, and the damage caused by the fire spreading through the inner core material is extensive. Sandwich panels consist of a nonflammable material on both sides of an insulation material. The types of insulation material include organic and inorganic insulation materials, but the former are used in more than 80% of the case. Organic insulation is economically advantageous compared to inorganic insulation, but it is vulnerable to fire. Therefore, the damage caused by sandwich panel fires is higher than that for general fires. In the case of the noxious gas analyzer test, the panel is tested with three round holes having a diameter of 25 mm, in order to determine the risk of the core material, but the cone calorimeter test is carried out using a sandwich panel. In this study, the cone calorimeter test was conducted to examine the fire risk of the composite material when heated on a nonflammable surface, exposed to the core material through a hole, and heated directly the core material. The type of organic insulation employed was flame retardant EPS (Expanded Polystyrene), and the test specimens were tested in three types of sandwich panel, a perforated sandwich panel and single core material. The purpose of this study is to propose a method of measuring the fire risk of the core materials of composite materials using the cone calorimeter test.

Fundamental Experiment on the Flow Characteristics inside the Exhaust Duct of Cone Calorimeter (콘 칼로리미터의 배기 덕트 내부 유동 특성 기초 실험)

  • Shin, Yeon Je;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2019
  • In this study, the mass flow rate of the heat release rate equation, which is the major factor of the oxygen consumption method, was analyzed for the fundamental investigation of the cone-calorimeter (5 m length and 0.3 m diameter). The shapes of a completely empty inside, 3 mm pore diameter mesh and pore diameter 10 mm honeycomb with 0.76 porosity were constructed using the cone-calorimeter. To calculate the mass flow rate, four bi-directional probes and thermocouples were installed in a uniform position in the vertical direction of flow. The velocity gradient and flow perturbation were measured from the increase in Reynolds number. As the flow capacity increased, the speed gradient increased in all three shapes relative to the turbulence intensity. In addition, the deviation of extended uncertainty to the mass flow was completely low in the order of empty space, mesh (dp = 3 mm) and honeycomb (dp = 10 mm and 𝜖 = 0.76) at the 95% confidence level. The results can be used in designs to improve the flow stability of the cone calorimeter.

Evaluation of Thermal Stability in Neutralization Process of Pigment Plant (안료제조시 중화공정의 열안정성 평가)

  • Lee, Keun-Won;Han, In-Soo;Park, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.43-50
    • /
    • 2007
  • Lack of understanding of the process chemistry and thermodynamics are the major reasons that can is lead to thermal runaway reaction in the chemical reaction process. The evaluation of reaction factors and thermal behavior in neutralization process of pigment plant are described in this paper. The experiments were performed in the C 80 calorimeter, and Thermal Screening Unit($TS^{u}$). The aim of the study was to evaluate the results of thermal stability in terms of safety reliability to be practical applications. It suggested that we be proposed safe operating conditions and securities for accident prevention through this study.

Heat Flux Evaluation of KSR-III Sub-scale Chamber (KSR-III 축소형 연소기의 열유속 평가)

  • 조원국;문일윤;김종규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.81-84
    • /
    • 2004
  • A water-cooled calorimeter chamber with 8 cooling channels based on KSR-III sub-scale chamber has been designed and manufactured. One dimensional empirical correlation has been used at the design stage and full three-dimensional CFD analysis has been conducted to confirm the cooling condition for hot fire test is safe. Predicted heat flux is accurate around the nozzle throat when the thermal resistance of carbon deposit is considered. However relatively large difference is observed in chamber part.

A Study on Thermo-Physical Properties of Microencapsulated Phase Change Material Slurry (마이크로캡슐 잠열 축열재 혼합수의 열물성에 관한 연구)

  • 임재근;최순열;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.962-971
    • /
    • 2004
  • This paper has dealt with thermo-physical properties of microencapsulated phase change material slurry as a latent heat storage material having a low melting point. The measured results of the thermo-physical properties of the test microencapsulated phase change material slurry, those are, density, specific heat, thermal conductivity and viscosity, were discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). The measurements of these properties of microencapsulated phase change material slurry have been carried out by using a specific-gravity meter, a water calorimeter, a differential scanning calorimeter(DSC), a transient hot wire method and rotating type viscometer, respectively. It was clarified that the additional properties law could be applied to the estimation of the density and specific heat of microencapsulated phase change material slurry and also the Euckens equation could be applied to the estimation of the thermal conductivity of this slurry.

A Study on the Thermal Decomposition Characteristics of Intermediate of Saccharin (삭카린 중간체의 열분해 특성에 관한 연구)

  • 김관응;김영수;신창섭
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.180-185
    • /
    • 1998
  • The evaluation of thermal and pressure hazard of chemicals on the manufacturing, transporting and storaging is important in the chemical industry for safety. In this study, the thermal decomposition characteristics of intermediate of Saccharin were investigated by using Accelerating Rate Calorimeter(ARC) and Differential Scanning Calorimeter(DSC). Experimental results showed that decomposition temperatures in p-TSA were about 280~$318^{\circ}C$ by DSC and $201^{\circ}C$ by ARC. In case of o-TSA were about $336^{\circ}C$~$360.8^{\circ}C$ by DSC and $299^{\circ}C$ by ARC. The decomposition temperature acquired by ARC was about $70^{\circ}C$ lower than that by DSC. The exothermic runaway reaction in case of p-TSA occured in 598 minute and o-TSA in 5 minute. For the safety in the chemical industry, we should consider the ARC data as well as DSC data in the handling and design of process.

  • PDF

Fire Retardancy of Recycled Polyurethane Foam Containing Phosphorus Compounds (인계화합물을 포함한 재활용 폴리우레탄폼의 난연성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.182-189
    • /
    • 2007
  • Used polyurethane was chemically degraded by treatments with flame retardants such as tris(3-chloropropyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). The structure of degraded products (DEP) was analyzed by FT-IR and P-NMR and it turned out to be phosphorus containing oligourethanes. Rigid polyurethane foam was produced by using the degraded products (DEP) as flame retardants. The flammability of recycled rigid polyurethane was investigated. The recycled polyurethane shows a reduced flammability over virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, the combustion parameters of the foam was measured by a cone calorimeter. Scanning electron micrograph of recycled PU shows the same uniform cell morphology as virgin PU.