• Title/Summary/Keyword: callus development

Search Result 168, Processing Time 0.019 seconds

Selection of Suitable Varieties of Carnation (Dianthus caryophyllus L.) and Optimization of Culture Conditions for Efficient Tissue Culture (효율적 조직배양체계 확립을 위한 카네이션 품종 선발 및 배양조건 설정)

  • Kang, Chan-Ho;Han, Bum-So;Han, So-Gon;Kown, Sung-Hwan;Song, Young-Ju
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • As the molecular breeding was progressed, many plant transformation techniques were attained for improving transformation accuracy and used to produce useful transgenic plants. Day by day, new varieties were developed so new transformation techniques required for these newly developed varieties. Carnation (Dianthus caryophyllus L.) is a popular and economically important ornamental plant, all over the world. Keeping this in view, we selected 18 varieties of D. caryophyllus L. commonly available in the market and did optimization of culture conditions for more efficient tissue culture and to get higher number of plants via micro-propagation. Four varieties namely Yellowdotcom, Jakarta, Belmonte, Polartessino etc. were selected for organ culture studies from single cell line. The optimum growth was recorded in the MS media supplied with sucrose 3%, NAA 1.0 mg/L and TDZ 1.0 mg/L. except Belmonte, in which, BA 1.0 mg/L was found to be the best combination, in place of TDZ, rest ingredients were same. The most efficient coagulating agent used to obtain higher number of plant from callus was phytagel 0.3%. The most effective explant for higher shoot formation was stem in which 80.2% shoot formation was recorded. It also reduced culture periods by 6 days.

Development of Herbicide(Paraquat) Tolerant Plant Through Tissue Culture- 1. Mechanism of Plant Tolerance to Paraquat (농약(제초제)(農藥(除草劑)) Paraquat에 대한 저항성(抵抗性) 식물체(植物體) 선발육성(選拔育成)- 제1보(第1報) Paraquat에 대한 식물(植物)의 내성기작(耐性機作))

  • Kim, K.U.;Kim, D.U.;Kwon, S.T.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.191-200
    • /
    • 1986
  • The study was conducted to screen paraquat-tolerant plant species among crops and weeds, using the response of plant like leaf disc discoloration, visual injury and dry weight in the presence of paraquat. Mechanism of paraquat-tolerance was investigated in strains of soybean through evaluating activities of superoxide dismutase and peroxidase and the multiplication of callus derived from soybean cotyledon. In crops, Kwanggyo has been selected as a paraquat-tolerant variety among soybean cultivars tested, and Hood as a susceptible one. In weeds, Polygonum aviculare, Chenopodium album and Pinellia ternata were evaluated as the paraquat resistant species, providing the possibility for the donor plant species for paraquat resistance. Activity of superoxide dismutase known to detoxify paraquat was markedly greater in Kwanggyo, a paraquat-tolerant cultivar than in Hood, a susceptible one. In addition, the similar response like superoxide dismutase was observed in peroxidese activity. The greater inhibition of callus multiplication was determined in Hood, a susceptible one than a tolerant one, Kwnggyo. Based on all the informations, it is strongly proposed that paraquat tolerance in soybean is due to destruction of $O_2^-$ by elevated concentration of superoxide dismutase in the tolerant cultivar.

  • PDF

Establishment of a regeneration system for the production of Calla plants (Zantedeschia spp.) via embryogenic callus culture (배발생캘러스 배양에 의한 칼라 식물체 재분화 체계 확립)

  • Han, In-Song;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.1
    • /
    • pp.32-36
    • /
    • 2019
  • Calla lilies (Zantedeschia spp.) are monocotyledonous ornamental plants which belongs to the Araceae family. After the release of elite calla cultivar, an efficient propagation system is needed for commercial use. Despite the use of conventional propagation methods such as splitting of tubers and rhizomes of calla, rapid and efficient propagation system should be developed. In order to achieve this goal, stem segments contained apical meristems derived from calla lily cultivar (cv. Gag-si) were cultured on Murashige and Skoog (MS) medium supplemented with various concentrations of cytokinin and auxin. This was aimed at inducing embryogenic calluses, shoots and multiple shoots. As a result, about 25% of induction rates of yellow embryogenic calluses were observed with MS medium containing both $0.5mg{\cdot}L^{-1}\;NAA$ and $1.5mg{\cdot}L^{-1}\;BA$ as growth regulators. In the experiments involving the regeneration from embryogenic calluses through shoot formation, MS medium supplemented with $0.5mg{\cdot}L^{-1}\;IAA$ and $2.0mg{\cdot}L^{-1}\;BA$ showed the highest rates at approximately 85 ~ 90% with regard to the formation of shoots in calla. Moreover, multiple shoots needed for rapid propagation were generated when explants were cultured on MS medium supplemented with $0.5mg{\cdot}L^{-1}\;IAA$ and $2.0mg{\cdot}L^{-1}\;BA$ with 40% of formation rate. In this study, the combination of auxin and cytokinin showed positive effects on both the induction of embryogenic calluses, the formation of shoots as well as multiple shoots in calla. The regeneration system described here can contribute to the development of breeding programs of calla in the future.

Comparison of Regeneration Conditions in Seven Pepper (Capsicum annuum L.) Varieties (7종의 고추(Capsicum annuum L.) 재분화 조건 비교)

  • Min-Su Kim;Yun-Jeong Han;Sharanya Tripathi;Jinwoo Kwak;Jin-Kyung Kwon;Byoung-Cheorl Kang;Jeong-Il Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.527-539
    • /
    • 2023
  • Pepper (Capsicum annuum L.) is an important vegetable and spice crop that has been cultivated worldwide. Pepper fruits have unique taste and aroma, providing a variety of antioxidants and compounds important for human health, which makes a high economic value. In addition, there is a high demand for new pepper varieties, according to consumer's preference. However, pepper is a recalcitrant plant for in vitro tissue and organ differentiation and plant regeneration, which makes it difficult to develop demanded varieties using newly developed technologies such as genetic engineering and gene editing. In this study, tissue culture and regeneration conditions were investigated using seven pepper varieties that were obtained from the core-collection of Seoul National University. We observed callus and bud induction and shoot formation using several media composition composed of different cytokinins and auxin concentrations. As a result, it was found that there were differences in callus induction and shoot formation of each variety depending on the hormone composition, and the highest regeneration was shown when the medium containing Zeatin Riboside and the petioles of seedlings were used. In particular, out of seven pepper varieties, CMV980 exhibited a higher regeneration efficiency (approximately 48%) than other varieties, followed by Yuwolcho. Therefore, this study provides CMV980 and Yuwolcho as good candidates that can be used for pepper transformation, which might contribute to the development of various varieties through gene editing technology in the future.

Development of Plant Regeneration and Genetic Transformation System from Shoot Apices of Sorghum bicolor (L.) Moench

  • Syamala, D.;Devi, Prathibha
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.77-85
    • /
    • 2004
  • Development of efficient plant regeneration and genetic transformation protocols (using the Particle Inflow micro-projectile Gun and the shoot-tips as target tissue) of Sorghum bicolor (L.) Moench in terms of expression of the reporter gene, $\beta$-glucuronidase(uidA) is reported here. Two Indian cultivars of sorghum were used in the study, viz. M-35-1 and CSV-15. Plant regeneration was achieved from one-week-old seedling shoot-tip explants via multiple-shoot-clumps and also somatic embryos. The multiple-shoot-clumps were produced on MS medium containing BA (0.5, 1.0 or 2.0 mg/$L^{-1}$), with biweekly subculture. Somatic embryos were directly produced on the enlarged dome shaped expansive structures that developed from shoot-tip explants (without any callus formation) when cultured on MS medium supplemented both with BA (0.5, 1.0 or 2.0 mg/$L^{-1}$) and 2,4-D (0.5 mg/$L^{-1}$). Whereas each multiple-shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing 1.0mg/$L^{-1}$ IBA and successfully transplanted to the glasshouse and grown to maturity with a survival rate of 92%. The plant regeneration efficiency of both the genotypes were similar. After the micro-projectile bombardment, expression of uidA gene was determined by scoring blue transformed cell sectors in the bombarded tissue by an in situ enzyme assay. The optimal conditions comprising a helium pressure of 2200 K Pa, the target distance of 11 cm with helium inlet fully opened and the use of osmoticum have been defined to aid our future strategies of genetic engineering in sorghum with genes for tolerance to biotic and abiotic stresses.

Metabolic Engineering of Indole Glucosinolates in Chinese Cabbage Plants by Expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1

  • Zang, Yun-Xiang;Lim, Myung-Ho;Park, Beom-Seok;Hong, Seung-Beom;Kim, Doo Hwan
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.231-241
    • /
    • 2008
  • Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glucobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.

Plant Regeneration from Immature Zygotic Embryos of Stewartia koreana Nakai via Somatic Embryogenesis (노각나무(Stewartia koreana Nakai)의 미숙배로부터 체세포배발생에 의한 식물체 재분화)

  • 최은경;박학봉;김광수;이용기
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.2
    • /
    • pp.77-81
    • /
    • 1995
  • When cultured on MS medium supplemented with 0.5 mg/L NAA alone or 1.0 mg/L 2,4-D and 0.5 mg/L BA, immature zygotic embryos of Stewartia koreana formed embryogenic calli and somatic embryos. In investigate effect of sucrose concentration on somatic embryo development, embryogenic calli were transferred to MS basal medium containing 1.5,3, 6 or 9% sucrose. The greatest frequency of somatic embryos was obtained on medium containing 6% sucrose. However addition of 1.5 or 9% sucrose to medium inhibited somatic embryo germination and development into normal plantlet After 5 weeks of hardening culture on medium containing 6% sucrose, somatic embryos were transferred to half strangth MS medium supplemented with 0.1% charcol, wherein these embryo developed into the normal plantlets.

  • PDF

Improving Corsican pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology and germination

  • Wtpsk, Senarath;Shaw, D.S.;Lee, Kui-Jae;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.61-62
    • /
    • 2003
  • Clonal propagation of high-value forest trees through somatic embryogenesis (SE) has the potential to rapidly capture the benefits of breeding or genetic engineering programs and to improve raw material uniformity and quality. A major barrier to the commercialization of this technology is the low quality of the resulting embryos. Several factors limit commercialization of SE for Corsican pine, including low initiation rates, low culture survival, culture decline causing low or no embryo production, and inability of somatic embryos to fully mature, resulting in low germination and reduced vigour of somatic seedlings. The objective was to develop a Corsican pine maturation medium that would produce cotyledonary embryos capable of germination. Treatments were arranged in a completely randomized design. Data were analyzed by analysis of variance, and significant differences between treatments determined by multiple range test at P=0.05. Corsican pine (Pinus nigra var. maritima) cultures were initiated on modified !P6 medium. Modifications of the same media were used for culture multiplication and maintenance. Embryogenic cultures were maintained on the same medium semi solidified with 2.5 g/l Gelrite. A maturation medium, capable of promoting the development of Corsican pine somatic embryos that can germinate, is a combination of iP6 modified salts, 2% maltose, 13% polyethylene glycol (PEG), 5 mg!l abscisic acid (ABA), and 2.5 g/l Gelrite. After initiation and once enough tissue developed they were grown in liquid medium. Embryogenic cell suspensions were established by adding 0.951.05 g of 10- to 14-day-old semisolid-grown embryogenic tissue to 9 ml of liquid maintenance media in a 250ml Erlenmeyer flask. Cultures were then incubated in the dark at 2022$^{\circ}$C and rotated at 120 rpm. After 2.53 months on maturation medium, somatic embryos were selected that exhibited normal embryo shape. Ten embryos were placed horizontally on 20 ml of either germination medium ($\frac{2}{1}$strength Murashige and Skoog (1962) salts with 2.5 g/l activated charcoal) or same medium with copper sulphate adjusted to 0.25 mg/1 to compensate for copper adsorption by activated carbon. 2% and 4% maltose was substituted by 7.5% and 13% PEG respectively to improve the yield of the embryos. Substitution of' maltose with PEG was clearly beneficial to embryo development. When 2% of the maltose was replaced with 7.5% PEG, many embryos developed to large bullet-shaped embryos. At latter stages of development most embryos callused and stopped development. A few short, barrel-shaped cotyledonary embryos formed that were covered by callus on the sides and base. When 4% of the maltose was removed and substituted with 13% PEG, the embryos developed further, emerging from the callus and increasing yield slightly. Microscopic examination of the cultures showed differing morphologies, varying from mostly single cells or clumps to well-formed somatic embryos that resembled early zygotic embryos only liquid cultures with organized early-stag. A procedure for converting and acclimating germinants to growth in soil and greenhouse conditions is also tested. Seedling conversion and growth were highly related to the quality of the germinant at the time of planting. Germinants with larger shoots, longer, straighter hypocotyls and longer roots performed best. When mature zygotic embryos germinate the root emerges, before or coincident with the shoot. In contrast, somatic embryos germinate in reverse sequence, with the cotyledons greening first, then shoot emergence and then, much later, if at all, the appearance of the root. Somatic seedlings, produced from the maturation medium, showed 100% survival when planted in a field setting. Somatic seedlings showed normal yearly growth relative to standard seedlings from natural seed.

  • PDF

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Adventitious Shoot and Plant Regeneration from Anther Culture of Hypericum ascyron L. (물레나물 약배양에 의한 부정 신초 및 식물체 재분화)

  • Ko, Jeong-Ae;Kim, Hyun-Soon;Kim, Hyung-Moo
    • Korean Journal of Plant Resources
    • /
    • v.21 no.5
    • /
    • pp.368-373
    • /
    • 2008
  • In order to investigate the effects of low temperature pretreatment of floral bud and plant growth regulators on anther-derived callus and shoot differentiation, anthers were cultured on 1/2 MS medium supplemented with 2,4-D, NAA, BA and TDZ. This plant depends on the plant growth regulators, for these anthers couldn't respond on 1/2 MS medium without plant growth regulators. 2,4-D was a prerequisite substance in this experiment, especially 52.6% of callus formation on MS medium with 2.0mg/L 2,4-D alone. However, the optimum medium was on 1/2 MS medium with 0.1 mg/L 2,4-D and 1.0mg/L BA for continuous growth and shoot differentiation from the anther. Calli derived from on MS medium with 2.0mg/L 2,4-D transferred to the 1/2MS medium with TDZ and BA. TDZ were less superior to BA, only one anther could produce shoot on MS media with 1.0mg/L TDZ. On the other hand, when the calli transferred to the medium with 3.0mg/L BA, adventitious shoots were proliferated, subsequently, regenerated shoots elongated from the embryogenic calli. After floral buds of one week before anthesis were incubated at $5^{\circ}C$ refrigerator for eight or fifteen days, anthers seperated from floral buds were cultured on 1/2MS medium supplemented with 0.1mg/L 2,4-D and 1.0mg/L BA. Callusing and shoot differentiation on anthers from treated at $5^{\circ}C$ for eight days were more effective than those of fifteen days or control.