• 제목/요약/키워드: calibration plot

검색결과 56건 처리시간 0.026초

Sensing NO3-N and K Ions in Hydroponic Solution Using Ion-Selective Membranes (이온선택성 멤브레인을 이용한 양액 내 질산태 질소 및 칼륨 측정)

  • Kim, Won-Kyung;Park, Tu-San;Kim, Young-Joo;Roh, Mi-Young;Cho, Seong-In;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.343-349
    • /
    • 2010
  • Rapid on-site sensing of nitrate-nitrogen and potassium ions in hydroponic solution would increase the efficiency of nutrient use for greenhouse crops cultivated in closed hydroponic systems while reducing the potential for environmental pollution in water and soil. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and the ability to directly measure the analyte. The capabilities of the ISEs for sensing nitrate and potassium in hydroponic solution can be affected by the presence of other ions such as calcium, magnesium, sulfate, sodium, and chloride in the solution itself. This study was conducted to investigate the applicability of two ISEs consisting of TDDA-NPOE and valinomycin-DOS PVC membranes for quantitative determinations of $NO_3$-N and K in hydroponic solution. Nine hydroponic solutions were prepared by diluting highly concentrated paprika hydroponic solution to provide a concentration range of 3 to 400 mg/L for $NO_3$-N and K. Two of the calibration curves relating membrane response and nutrient concentration provided coefficients of determination ($R^2$) > 0.98 and standard errors of calibration (SEC) of < 3.79 mV. The use of the direct potentiometry method, in conjunction with an one-point EMF compensation technique, was feasible for measuring $NO_3$-N and K in paprika hydroponic solution due to almost 1:1 relationships and high coefficients of determination ($R^2$ > 0.97) between the levels of $NO_3$-N and K obtained with the ion-selective electrodes and standard instruments. However, even though there were strong linear relationships ($R^2$ > 0.94) between the $NO_3$-N and K concentrations determined by the Gran's plot-based multiple standard addition method and by standard instruments, hydroponic $NO_3$-N concentrations measured with the ISEs, on average, were about 10% higher than those obtained with the automated analyzer whereas the K ISE predicted about 59% lower K than did the ICP spectrometer, probably due to no compensation for a difference between actual and expected concentrations of standard solutions directly prepared.

Using Chlorophyll(SPAD) Meter Reading and Shoot Fresh Weight for Recommending Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice

  • Nguyen, Hung The;Nguyen, Lan The;Yan, Yong-Feng;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.33-38
    • /
    • 2007
  • Nitrogen management at the panicle initiation stage(PI) should be fine-tuned for securing a concurrent high yield and high quality rice production. For calibration and testing of the recommendation models of N topdressing rates at PI for target grain yield and protein content of rice, three split-split-plot design experiments including five rice cultivars and various N rates were conducted at the experimental farm of Seoul National University, Korea from 2003 to 2005. Data from the first two years of experiments were used to calibrate models to predict grain yield and milled-rice protein content using shoot fresh weight(FW), chlorophyll meter value(SPAD), and the N topdressing rate(Npi) at PI by stepwise multiple regression. The calibrated models explained 85 and 87% of the variation in grain yield and protein content, respectively. The calibrated models were used to recommend Npi for the target protein content of 6.8%, with FW and SPAD measured for each plot in 2005. The recommended N rate treatment was characterized by an average protein content of 6.74%(similar to the target protein content), reduced the coefficient of variation in protein content to 2.5%(compared to 4.6% of the fixed rate treatment), and increased grain yield. In the recommended N rate treatments for the target protein content of 6.8%, grain yield was highly dependent on FW and SPAD at PI. In conclusion, the models for N topdressing rate recommendation at PI were successful under present experimental conditions. However, additional testing under more variable environmental conditions should be performed before universal application of such models.

  • PDF

External Validation of a Clinical Scoring System for Hematuria

  • Lee, Seung Bae;Kim, Hyung Suk;Kim, Myong;Ku, Ja Hyeon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6819-6822
    • /
    • 2014
  • Background: The aim of this study was to evaluate the accuracy of a new scoring system in Korean patients with hematuria at high risk of bladder cancer. Materials and Methods: A total of 319 consecutive patients presenting with painless hematuria without a history of bladder cancer were analyzed, from the period of August 2012 to February 2014. All patients underwent clinical examination, and 22 patients with incomplete data were excluded from the final validation data set. The scoring system included four clinical parameters: age (${\geq}50$ = 2 vs. <50 =1), gender (male = 2 vs. female = 1), history of smoking (smoker/ex-smoker = 4 vs. non-smoker = 2) and nature of the hematuria (gross = 6 vs. microscopic = 2). Results: The area under the receiver-operating characteristic curve (95% confidence interval) of the scoring system was 0.718 (0.655-0.777). The calibration plot demonstrated a slight underestimation of bladder cancer probability, but the model had reasonable calibration. Decision curve analysis revealed that the use of model was associated with net benefit gains over the treat-all strategy. The scoring system performed well across a wide range of threshold probabilities (15%-45%). Conclusions: The scoring system developed is a highly accurate predictive tool for patients with hematuria. Although further improvements are needed, utilization of this system may assist primary care physicians and other healthcare practitioners in determining a patient's risk of bladder cancer.

Design of a Cross-obstacle Neural Network Controller using Running Error Calibration (주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계)

  • Lim, Shin-Teak;Yoo, Sung-Goo;Kim, Tae-Yeong;Kim, Yeong-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제16권5호
    • /
    • pp.463-468
    • /
    • 2010
  • An obstacle avoidance method for a mobile robot is proposed in this paper. Our research was focused on the obstacles that can be found indoors since a robot is usually used within a building. It is necessary that the robot maintain the desired direction after successfully avoiding the obstacles to achieve a good autonomous navigation performance for the specified project mission. Sensors such as laser, ultrasound, and PSD (Position Sensitive Detector) can be used to detect and analyze the obstacles. A PSD sensor was used to detect and measure the height and width of the obstacles on the floor. The PSD sensor was carefully calibrated before measuring the obstacles to achieve better accuracy. Data obtained from the repeated experiments were used to plot an error graph which was fitted to a polynomial curve. The polynomial equation was used to navigate the robot. We also obtained a direction-error model of the robot after avoiding the obstacles. The prototypes for the obstacle and direction-error were modeled using a neural network whose inputs are the obstacle height, robot speed, direction of the wheels, and the error in direction. A mobile robot operated by a notebook computer was setup and the proposed algorithm was used to navigate the robot and avoid the obstacles. The results showed that our algorithm performed very well during the experiments.

Construction of a Nomogram for Predicting Difficulty in Peripheral Intravenous Cannulation (말초 정맥주사 삽입 어려움 예측을 위한 노모그램 구축)

  • Kim, Kyeong Sug;Choi, Su Jung;Jang, Su Mi;Ahn, Hyun Ju;Na, Eun Hee;Lee, Mi Kyoung
    • Journal of Home Health Care Nursing
    • /
    • 제30권1호
    • /
    • pp.48-58
    • /
    • 2023
  • Purpose: The purpose of this study was to construct a nomogram for predicting difficulty in peripheral intravenous cannulation (DPIVC) for adult inpatients. Methods: This study conducted a secondary analysis of data from the intravenous cannulation cohort by intravenous specialist nurses at a tertiary hospital in Seoul. Overall, 504 patients were included; of these, 166 (32.9%) patients with failed cannulation in the first intravenous cannulation attempt were included in the case group, while the remaining 338 patients were included in the control group. The nomogram was built with the identified risk factors using a multiple logistic regression analysis. The model performance was analyzed using the Hosmer-Lemeshow test, area under the curve (AUC), and calibration plot. Results: Five factors, including vein diameter, vein visibility, chronic kidney disease, diabetes, and chemotherapy, were risk factors of DPIVC. The nomogram showed good discrimination with an AUC of 0.81 (95% confidence interval: 0.80-0.82) by the sample data and 0.79 (95% confidence interval: 0.74-0.84) by bootstrapping validation. The Hosmer-Lemeshow goodness-of-fit test showed a p-value of 0.694, and the calibration curve of the nomogram showed high coherence between the predicted and actual probabilities of DPIVC. Conclusion: This nomogram can be used in clinical practice by nurses to predict DPIVC probability. Future studies are required, including those on factors possibly affecting intravenous cannulation.

A Study on the proficiency test of pH measurements (pH 측정의 숙련도 시험에 대한 연구)

  • Lee, Hwashim;Kim, Myungsoo;Choi, Jongoh
    • Analytical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.230-237
    • /
    • 2001
  • In general, the pH measurement follows calibration of glass electrode system using pH standard solution. When pH is measured at constant temperature, uncertainty factors are mainly related to the accuracy of pH standard solution and the accuracy and precision of glass electrode. Participants in this proficiency test were the volunteers trying to know the distribution of the measured pH values for the same sample and the sources of error through 1998 and 1999. The samples for proficiency test are phosphate salt standard solutions specially prepared in KRISS, of which pH values were 6.860, 7.415(at $25^{\circ}C$), and the stability test was performed for the same periods of proficiency test. The results of the proficiency test were plotted according to Youden plot, which shows whether the error is random or systematic. The results of Youden plot showed that the source of error was from the systematic effect of laboratories in each year. This shows that the source of error is the standard solutions used in laboratories.

  • PDF

Determination of Lead(II) at Nation-Coated Glassy Carbon Electrodes Modified by Tetren-Glycerol (Nafion-Tetren-Glycerol이 수식된 유리탄소전극에서 납(II) 이온의 정량)

  • 반옥기;박은희;정근호
    • Journal of Environmental Health Sciences
    • /
    • 제29권2호
    • /
    • pp.62-68
    • /
    • 2003
  • Differential pulse voltammetry (DPV) using nafion-coated glassy carbon electrodes modified with Tetren(tetraethylene pentamine)-glycerol showed sensitivity for determining lead (II) at low concentration. The Lead (II) was accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface was characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry. Various experimental parameters, such as the composition of modifier, preconcentration time, pH of electrolyte (0.1 M acetate buffer), and parameters of differential pulse voltammetry, were optimized. The initial potential was applied for 50 s, the electrode was scanned from -0.9 to -0.3 V, and the anodic peak current was measured at -0.604 V $\pm$ 0.015 V (vs. Ag/AgCl). The calibration plot was obtained in the range 1.0$\times$10$^{-8}$ M~l.0$\times$10$^{-6}$ M with pH 4.5 buffer solution. The detection limit (3$\sigma$) it as low as 5.0$\times$ 10$^{-9}$ M. This method is applied to the determination of lead(II) in a certified reference material and the result agrees satisfactorily with the certified value.

A study on slim-hole density logging based on numerical simulation (소구경 시추공에서의 밀도검층 수치모델링 연구)

  • Ku, Bonjin;Nam, Myung Jin;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • 제15권4호
    • /
    • pp.227-234
    • /
    • 2012
  • In this study, we make simulation of density log using a Monte Carlo N-Particle (MCNP) algorithm to make an analysis on density logging under different borehole environments, since density logging is affected by various borehole conditions like borehole size, density of borehole fluid, thickness and type of casing, and so on. MCNP algorithm has been widely used for simulation of problems of nuclear particle transportation. In the simulation, we consider the specific configuration of a tool (Robertson Geologging Co. Ltd) that Korea institute of geoscience and mineral resources (KIGAM) has used. In order to measure accurate bulk density of a formation, it is essential to make a calibration and correction chart for the tool under considerations. Through numerical simulation, this study makes calibration plot of the density tool in material with several known bulk densities and with boreholes of several different diameters. In order to make correction charts for the density logging, we simulate and analyze measurements of density logging under different borehole conditions by considering borehole size, density of borehole fluid, and presence of casing.

External validation of IBTR! 2.0 nomogram for prediction of ipsilateral breast tumor recurrence

  • Lee, Byung Min;Chang, Jee Suk;Cho, Young Up;Park, Seho;Park, Hyung Seok;Kim, Jee Ye;Sohn, Joo Hyuk;Kim, Gun Min;Koo, Ja Seung;Keum, Ki Chang;Suh, Chang-Ok;Kim, Yong Bae
    • Radiation Oncology Journal
    • /
    • 제36권2호
    • /
    • pp.139-146
    • /
    • 2018
  • Purpose: IBTR! 2.0 nomogram is web-based nomogram that predicts ipsilateral breast tumor recurrence (IBTR). We aimed to validate the IBTR! 2.0 using an external data set. Materials and Methods: The cohort consisted of 2,206 patients, who received breast conserving surgery and radiation therapy from 1992 to 2012 at our institution, where wide surgical excision is been routinely performed. Discrimination and calibration were used for assessing model performance. Patients with predicted 10-year IBTR risk based on an IBTR! 2.0 nomogram score of <3%, 3%-5%, 5%-10%, and >10% were assigned to groups 1, 2, 3, and 4, respectively. We also plotted calibration values to observe the actual IBTR rate against the nomogram-derived 10-year IBTR probabilities. Results: The median follow-up period was 73 months (range, 6 to 277 months). The area under the receiver operating characteristic curve was 0.607, showing poor accordance between the estimated and observed recurrence rate. Calibration plot confirmed that the IBTR! 2.0 nomogram predicted the 10-year IBTR risk higher than the observed IBTR rates in all groups. High discrepancies between nomogram IBTR predictions and observed IBTR rates were observed in overall risk groups. Compared with the original development dataset, our patients had fewer high grade tumors, less margin positivity, and less lymphovascular invasion, and more use of modern systemic therapies. Conclusions: IBTR! 2.0 nomogram seems to have the moderate discriminative ability with a tendency to over-estimating risk rate. Continued efforts are needed to ensure external applicability of published nomograms by validating the program using an external patient population.

Recommendation of Nitrogen Topdressing Rates at Panicle Initiation Stage of Rice Using Canopy Reflectance

  • Nguyen, Hung T.;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.141-150
    • /
    • 2008
  • The response of grain yield(GY) and milled-rice protein content(PC) to crop growth status and nitrogen(N) rates at panicle initiation stage(PIS) is critical information for prescribing topdress N rate at PIS(Npi) for target GY and PC. Three split-split-plot experiments including various N treatments and rice cultivars were conducted in Experimental Farm, Seoul National University, Korea in 2003-2005. Shoot N density(SND, g N in shoot $m^{-2}$) and canopy reflectance were measured before N application at PIS, and GY, PC, and SND were measured at harvest. Data from the first two years(2003-2004) were used for calibrating the predictive models for GY, PC, and SND accumulated from PIS to harvest using SND at PIS and Npi by multiple stepwise regression. After that the calibrated models were used for calculating N requirement at PIS for each of nine plots based on the target PC of 6.8% and the values of SND at PIS that was estimated by canopy reflectance method in the 2005 experiment. The result showed that SND at PIS in combination with Npi were successful to predict GY, PC, and SND from PIS to harvest in the calibration dataset with the coefficients of determination ($R^2$) of 0.87, 0.73, and 0.82 and the relative errors in prediction(REP, %) of 5.5, 4.3, and 21.1%, respectively. In general, the calibrated model equations showed a little lower performance in calculating GY, PC, and SND in the validation dataset(data from 2005) but REP ranging from 3.3% for PC and 13.9% for SND accumulated from PIS to harvest was acceptable. Nitrogen rate prescription treatment(PRT) for the target PC of 6.8% reduced the coefficient of variation in PC from 4.6% in the fixed rate treatment(FRT, 3.6g N $m^{-2}$) to 2.4% in PRT and the average PC of PRT was 6.78%, being very close to the target PC of 6.8%. In addition, PRT increased GY by 42.1 $gm^{-2}$ while Npi increased by 0.63 $gm^{-2}$ compared to the FRT, resulting in high agronomic N-use efficiency of 68.8 kg grain from additional kg N. The high agronomic N-use efficiency might have resulted from the higher response of grain yield to the applied N in the prescribed N rate treatment because N rate was prescribed based on the crop growth and N status of each plot.

  • PDF