• Title/Summary/Keyword: calibration period

Search Result 270, Processing Time 0.022 seconds

Calibration Technique of a Gimballed INS by the Change of Schuler Period (슐러주기 변경에 의한 김블형 관성항법장치 교정기법 연구)

  • Sin, Yong-Jin;Kim, Cheon-Jung;Park, Jeong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.843-848
    • /
    • 2001
  • Most of gimballed inertial navigation systems(GNIS) are calibrated periodically to maintain their inherent accuracy. The existing calibration techniques using the conventional schuler test with the least square method and the multiposition test take a long time and have some problems in procedures. To solve this problem, calibration method using a linear Kalman filter is proposed by us. In this paper, the calibration method by the change of Schuler period is studied in order to improve the calibration performance of the gimballed INS. First of all, it is shown that the observability of Kalman filter is also enhanced the Schuler period is decreased. Simulation results show that the calibration performance using the present scheme is improved according to the decrease of the Schuler period and the calibration time is shortened extremely, too. And our proposed technique shows desirable estimation performance for the g-sensitive errors of inertial sensors in particular.

  • PDF

Calibration of hydrophone Coordinates by the Telemetry techniques (초음파 핑거를 이용한 수파기 좌표의 보정)

  • 신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.252-261
    • /
    • 1992
  • The accuracy of the position fixing with telemetry techniques depends in general on the accuracy of the location of the receiving point(hydrophone). To increase the accuracy of the coordinates of four hydrophones suspended down at both sides of the vessel anchored, each hydrophone motion is compensated using a depth pinger mounted on the seabed of 30m depth. The pinger location is calculated with a hyperbolic method. Using this technique so called hydrophone coordinates calibration, the movement of the Remotely Operated Vehicle(ROV), which has the same type of pinger mentioned above could be tracked down more accurately. Under the maximum variation ranges of a hydrophone of 5.2m in athwartships, 3.2m in alongship, and about 0.2m/s of the moving velocity in both directions, the ROV track with calibration is more close to the reality than that without calibration Tow depth pingers of same frequency can be distinguished by the use of three factors; The pulse period, the phase and the pulse period variation allowed in acquisition of the pinger as far as its pulse period is varied in smooth.

  • PDF

Effects of Hydro-Climate Conditions on Calibrating Conceptual Hydrologic Partitioning Model (개념적 수문분할모형의 보정에 미치는 수문기후학적 조건의 영향)

  • Choi, Jeonghyeon;Seo, Jiyu;Won, Jeongeun;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.568-580
    • /
    • 2020
  • Calibrating a conceptual hydrologic model necessitates selection of a calibration period that produces the most reliable prediction. This often must be chosen randomly, however, since there is no objective guidance. Observation plays the most important role in the calibration or uncertainty evaluation of hydrologic models, in which the key factors are the length of the data and the hydro-climate conditions in which they were collected. In this study, we investigated the effect of the calibration period selected on the predictive performance and uncertainty of a model. After classifying the inflows of the Hapcheon Dam from 1991 to 2019 into four hydro-climate conditions (dry, wet, normal, and mixed), a conceptual hydrologic partitioning model was calibrated using data from the same hydro-climate condition. Then, predictive performance and post-parameter statistics were analyzed during the verification period under various hydro-climate conditions. The results of the study were as follows: 1) Hydro-climate conditions during the calibration period have a significant effect on model performance and uncertainty, 2) calibration of a hydrologic model using data in dry hydro-climate conditions is most advantageous in securing model performance for arbitrary hydro-climate conditions, and 3) the dry calibration can lead to more reliable model results.

Accurate Camera Self-Calibration based on Image Quality Assessment

  • Fayyaz, Rabia;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.2
    • /
    • pp.41-52
    • /
    • 2018
  • This paper presents a method for accurate camera self-calibration based on SIFT Feature Detection and image quality assessment. We performed image quality assessment to select high quality images for the camera self-calibration process. We defined high quality images as those that contain little or no blur, and have maximum contrast among images captured within a short period. The image quality assessment includes blur detection and contrast assessment. Blur detection is based on the statistical analysis of energy and standard deviation of high frequency components of the images using Discrete Cosine Transform. Contrast assessment is based on contrast measurement and selection of the high contrast images among some images captured in a short period. Experimental results show little or no distortion in the perspective view of the images. Thus, the suggested method achieves camera self-calibration accuracy of approximately 93%.

A DAC calibration technique for high monolithic operation (높은 선형동작을 위한 새로운 DAC 오차보정 기법에 관한 연구)

  • 이승민;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.413-416
    • /
    • 1998
  • This paper presents a dAC calibration technique for high resolution and monolithic operation. The calibration technique consists of basic source, current memory cell (C.M) and current substrator. Current memory supplies the error current to basic source. Current substrator extracts the error current from the main source. It is simple and needs no special calibration period. The proposed current cell has high calibration performance and guarantees 100MHz operation.

  • PDF

Assessment of LCD Color Display Performance Based on AAPM TG 18 Protocol : Decision of Quality Control and Calibration Period (판독용 LCD 컬러 모니터 장치의 성능 평가 - 성능 평가 및 Calibration 주기 결정을 중심으로 -)

  • Lee, Won-Hong;Son, Soon-Yong;Noh, Sung-Soon;Lee, In-Hwa;Kang, Sung-Ho;Lee, Yong-Moon;Park, Jae-Soo;Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2008
  • Purpose: This study is to decide a quality control and calibration period of LCD display devices used for reading diagnostic images. Materias and Methods: The assessment test of 20 flat panel LCD color display devices used for reading diagnostic images were performed based on AAPM TG 18 protocol over the total six sessions at one month intervals from three months after primary calibration, in terms of geometric distortion, reflection test, luminance response evaluation, luminance uniformity, resolution, noise, veiling glare and chromaticity test. Results: The results of geometric distortion, reflection test, luminance uniformity, resolution, noise, veiling glare and chromaticity test were within the criteria recommended by AAPM TG 18, except for luminance response evaluation. In the measured luminance deviation of luminance response evaluation, 4(25%) of 20 display devices were passed a criterion from four months after calibration, and 11 (55%) were passed from eight months. Also in the contrast response of the luminance response evaluation, 1(5%) display device was passed a criterion from four months after calibration, and 3(15%) were passed from eight months. Conclusion: Considering the passing deviation after calibration, the time required and a manpower, the quality control and calibration period of LCD display devices used for reading diagnostic images should be a three months and six months after calibration.

  • PDF

Report of Present Status of Calibration for Domestic Radiation Measurements Instruments (국내 방사선 측정장비 보유 현황 및 교정 현황 조사)

  • Lim, Sangwook;Choi, Jinho;An, Sohyun;Cho, Kwang Hwan;Lee, Sang Hoon;Lee, Rena;Cho, Sam Ju
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • Periodical calibrations of radiation detectors are important for accurate quality assurance of therapeutic linac. The measuring instruments such as ion-chamber, thermometer, barometer, and survey meter should be calibrated periodically. Period of calibration for these instruments is suggested 6 month to one year in Korea and two years in other countries nowadays. Therefore, the determination of reasonable period for calibration is needed. In this study, we plan to utilize the results of these survey; frequent in use, how to use and stability of instruments, to determine the optimized period of calibration for the instruments in the departments of radiation oncology in Korea based on the ILAC-G24. The SurveyMonkey web-based survey tool was used and the objects of survey were 18 department of radiation oncology in university hospitals, and 15 departments were answered. The 64 questionnaires which supposed to be answered in 50 minutes were classified as the information of candidates, the thermometer, the barometer, the surveymeter, and the ion-chamber. The thermometers and the barometers were not under periodical calibration for more than half of candidates. The periods of calibration of surveymeters were 6 month to 1 year. We expect that the calibration period can be determined based on these survey results.

Enhancement and Application of SWAT Auto-Calibration using Korean Ministry of Environment 8-Day Interval Flow/Water Quality data (환경부 8일 유량.수질 자료를 이용한 SWAT 자동보정 모듈 개선 및 적용 평가)

  • Kang, Hyunwoo;Ryu, Jichul;Kang, Hyungsik;Choi, Jaewan;Moon, Jongpil;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.247-254
    • /
    • 2012
  • Soil and Water Assessment Tool (SWAT) model has been widely used in estimation of flow and water quality at various watersheds worldwide, and it has an auto-calibration tool that could calibrate the flow and water quality data automatically from thousands of simulations. However, only continuous measured day flow/water quality data could be used in the current SWAT auto-calibration tool. Therefore, 8-day interval flow and water quality data measured nationwide by Korean Ministry of Environment (MOE) could not be used in SWAT auto-calibration even though long-term flow and water quality data in the Korean Total Maximum Daily Load (TMDL) watersheds available. In this study, current SWAT auto-calibration was modified to calibrate flow and water quality using 8-day interval flow and water quality data. As a result of this study, the Nash and Sutcliffe Efficiency (NSE) values for flow estimation using auto-calibration are 0.77 (calibration period) and 0.68 (validation period), and NSE value for water quality (T-P load) estimation (using the 8-day interval water quality data) is 0.80. The enhanced SWAT auto-calibration could be used in the estimation of continuous flow and water quality data at the outlet of TMDL watersheds and ungaged point of watersheds. In the next study, the enhanced SWAT auto-calibration will be integrated with Web based Load Duration Curve (LDC) system, and it could be suggested as methods of appraisal of TMDL in South Korea.

Calibration of HSPF Hydrology Parameters Using HSPEXP Model Performance Criteria (HSPEXP 모형평가지표 이용한 HSPF 모형의 수문매개변수 보정)

  • Kim, Sang-Min;Seong, Choung-Hyun;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.15-20
    • /
    • 2009
  • The purpose of this study was to test the applicability of the HSPEXP model performance criteria for calibrating hydrologic parameters of HSPF. Baran watershed, located at Whasung city, was selected as a study watershed in this study. Input data for the HSPF model were obtained from the digital elevation map, landuse map, soil map and others. Water flow data from 1996 to 2000 was used for calibration and from 2002 to 2007 was for validation. Using the HSPEXP decision-support software, hydrology parameters were adjusted based on total volume, then low flows, storm flows, and finally seasonal flows. Suggested criteria for each model performance variables were referenced from the previous research. For the calibration period, all the HSPEXP model performance criteria were satisfied while two criteria were slightly violated for the validation period.

Studies on the Development of Storage Tank Model for both Long and Short Terms Runoff (II) (장단기유출 양용저유 탱크 모델의 개발에 관한 연구 (II))

  • 이순혁;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.51-60
    • /
    • 1991
  • The main objective of this study is to examine the adaptability for the large watershed of the storage tank model which can be applied for the analysis of both long and short terms runoff developed on the basis of hydrologic data for a smaH mountaineous watershed. The results obtained in this study are summarized as follows ; 1. Areal rainfalls of the Dae Chong watershed were calculated by Thiessen method composed of 9 Thiessen networks. 2. Optimal parameters for two types, Model A and Model B of tank models were derived through calibration procedure by standardized Powell method. 3. Monthly simulated flows of Model B are seemed to be closer to the monthly observed than those of Model A during calibration period in the long terms runoff. 4. Relative errors for the simulated flood flows of Model B were apperaed as lower percentage to the observed than those of Model A during calibration period in the short terms runoff. 5. Daily simulated hydrographs of Model B are seemed to be closer to the daily observed than those of Model A during verification period in the long terms runoff. Significance of Model B was highly acknowledged in comparison with Model A in the correlation analysis between annual observed and annual simulated runoff. 6. Reproducibility of simulated flows for Model B is generally seemed to be better than that of Model A during calibration period in the short terms runoff. 7. It can be concluded that reproducibility of Model B is superior to that of Model A in the long and short terms runoff even a large watershed like the result of the small one. 8. It was verified that adaptability for the large watershed of Model B is superior to that of Model A between the two models which were developed by a small watershed characteristics for both long and short terms runoff. 9. Further study for getting a suitable tank model is desirable to be established by the decision, calibration method of initial parameters of tank model and by additional application of another watershed with different watersheds and meterological characteristics.

  • PDF