• Title/Summary/Keyword: calibration facilities

Search Result 48, Processing Time 0.022 seconds

Start Point Detection Method for Tracing the Injection Path of Steel Rebars (철근 사출 궤적 추적을 위한 시작지점 검출 방법)

  • Lee, Jun-Mock;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.9-16
    • /
    • 2019
  • Companies that want to improve their manufacturing processes have recently introduced the smart factory, which is particularly noticeable. The ultimate goal is to maximize the area of the smart factory that performs the process of the production facility completely with minimal manual control and to minimize errors of reasoning. This research is a part of a project for unmanned production, management, packaging, and delivery management and the detection of the start point of rebars to perform the automatic calibration of the rollers through the tracking of the automated facilities of unmanned production. It must meet the requirement to accurately track the position from the start point to the end point. In order to improve the tracking performance, it is important to set the accurate start point. However, the probability of tracking errors is high depending on environments such as illumination and dust through the conventional time-based detection method. In this paper, we propose a starting point detection method using the average brightness change of high speed IR camera to reduce the errors according to the environments, As a result, its performance is improved by more than 15%.

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

Study on simultaneous determination of aromatic material causing allergic in children's products by GC-MSD (GC-MSD를 이용한 어린이 제품 중 알러지 유발 방향성 물질의 동시분석법 연구)

  • Ko, Kyeong Mok;Rhu, Chan Joo;Ko, Byeong Rae;Lee, Seok Ki
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.134-142
    • /
    • 2020
  • Twenty-one allergy-induced aromatic material in children's products were analyzed using gas chromatography mass spectrometer(GC-MSD). The analytes were extracted using an automatic Soxhlet extractor, centrifuged for 10 minutes in a fast freezing centrifuge, and the supernatant was filtered with a syringe filter and then transferred into a 2 mL vial and injected in a split mode. In the established condition, the calibration curve showed linearity with a determination coefficient of 0.9981 or more. Sensitivity was 0.3145 ~ 1.6757, which showed a fairly wide range of sensitivity for each substance. The detection limit of the device was 0.0016 ~ 0.0423 ㎍/mL and the maximum detection limit was less than 0.05 ㎍/mL. The method detection limit ranged from 0.0030 ~ 0.0589 ㎍/mL. In addition, the limit of quantification ranged from 0.0096 to 0.1876 ㎍/mL, with precision ranging from 0.41 to 10.49 % and accuracy ranging from 83 to 116 %. The analytical method developed in this study was applied to commercial products.

A clinical pilot study of jawbone mineral density measured by the newly developed dual-energy cone-beam computed tomography method compared to calibrated multislice computed tomography

  • Kim, Hyun Jeong;Kim, Ji Eun;Choo, Jiyeon;Min, Jeonghee;Chang, Sungho;Lee, Sang Chul;Pyun, Woong Beom;Seo, Kwang-Suk;Karm, Myong-Hwan;Koo, Ki-Tae;Rhyu, In-Chul;Myoung, Hoon;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.295-299
    • /
    • 2019
  • Purpose: This clinical pilot study was performed to determine the effectiveness of dual-energy cone-beam computed tomography (DE-CBCT) in measuring bone mineral density (BMD). Materials and Methods: The BMD values obtained using DE-CBCT were compared to those obtained using calibrated multislice computed tomography (MSCT). After BMD calibration with specially designed phantoms, both DE-CBCT and MSCT scanning were performed in 15 adult dental patients. Three-dimensional (3D) Digital Imaging and Communications in Medicine data were imported into a dental software program, and the defined regions of interest (ROIs) on the 3-dimensional surface-rendered images were identified. The automatically-measured BMD values of the ROIs (g/㎤), the differences in the measured BMD values of the matched ROIs obtained by DE-CBCT and MSCT 3D images, and the correlation between the BMD values obtained by the 2 devices were statistically analyzed. Results: The mean BMD values of the ROIs for the 15 patients as assessed using DE-CBCT and MSCT were 1.09±0.07 g/㎤ and 1.13±0.08 g/㎤, respectively. The mean of the differences between the BMD values of the matched ROIs as assessed using DE-CBCT and calibrated MSCT images was 0.04±0.02 g/㎤. The Pearson correlation coefficient between the BMD values of DE-CBCT and MSCT images was 0.982 (r=0.982, P<0.001). Conclusion: The newly developed DE-CBCT technique could be used to measure jaw BMD in dentistry and may soon replace MSCT, which is expensive and requires special facilities.

Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF) (Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석)

  • Eum, Chul Hun;Kim, Bon Kyung;Kang, Dong Young;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.476-482
    • /
    • 2012
  • Asian dust particles are known to have sizes ranging from a few nanometers up to about a few micrometers. The environmental and health effects depend on the size of the dust particles. The smaller, the farther they are transported, and the deeper they penetrate into the human respiratory system. Sedimentation field-flow fractionation (SdFFF) provides separation of nano to microparticles using a combination of centrifugal force and parabolic laminar flow in a channel. In this study, the steric mode of SdFFF (Sd/StFFF) was tested for size-based separation and characterization of Asian dust particles. Various SdFFF experimental parameters including flow rate, stop-flow time and field strength of the centrifugal field were optimized for the size analysis of Asian dust. The Sd/StFFF calibration curve showed a good linearity with $R^2$ value of 0.9983, and results showed an excellent capability of Sd/StFFF for a size-based separation of micron-sized particles.The optical microscopy (OM) was also used to study the size and the shape of the dust particles. The size distributions of the samples collected during a thick dust period were shifted towards larger sizes than those of the samples collected during thin dust periods. It was also observed that size distribution of the sample collected during dry period shifts further towards larger sizes than that of the samples collected during raining period, suggesting the sizes of the dust particle decrease during raining periods as the components adsorbed on the surface of the dust particles were removed by the rain water. Results show Sd/StFFFis a useful tool for size characterization of environmental particles such as the Asian dust.

Status Report of the Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Moon, Bongkon;Park, Sung-Joon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared spectro-photometric instrument optimized to the Next Generation of small satellite series (NEXTSat). To achieve the major scientific objectives for the study of the cosmic star formation in local and distant universe, the spectro-photometric survey covering more than 100 square degree will be performed. The main observational targets will be nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optics was developed to cover a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $2.5{\mu}m$, which were revised based upon the recent test and evaluation of the NISS instrument. The mechanical structure were tested under the launching condition as well as the space environment. The signal processing from infrared sensor and the communication with the satellite were evaluated after the integration into the satellite. The flight model of the NSS was assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. The accurate calibration data were obtained in our test facilities. Here, we report the test results of the flight model of the NISS.

  • PDF

Sustainability of Olive Flounder Production by the Systems Ecology -II. Simulating the Future of Olive Flounder Aquaculture on the Land- (시스템 생태학적 접근법에 의한 넙치생산의 지속성 평가 -2. 넙치 육상양식산업에 대한 예측-)

  • Kim Nam Kook;Son Ji Ho;Kim Jin Lee;Cho Eun Il;Lee Suk Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.660-665
    • /
    • 2002
  • In Korea, an olive flounder is very popular fish food item. However, due to the increasing human population, the present catches of the olive flounder may not be sufficient to satisfy the present demand. To increase the supply of the olive flounder, aquaculture has been begun. An interest in the aquaculture of the olive flounder has been increased recently because of its characteristics of good growth and high price in the market, However, the productivity of the olive flounder aquaculture depends on economic inputs such as fuels, facilities, and labor. The rapid growths of the olive flounder aquaculture and the concerns about economic and ecological sustainability have focused peoples attention on the aquaculture industry. In this study, an energy systems model was built to simulate the variation of sustainability on the aquaculture of olive flounder, The results of simulation based on calibration data in 1995 show that olive flounder production yield and asset slowly increase to steady state because of the law of supply and demand. The results of simulation based on the variation of oil price show that the more increase the oil price, the more decrease the olive flounder economic yield and asset. Energy sources required for systems determine the sustainability of systems. Conclusionally, the present systems of the olive flounder aquaculture should be transformed to ecological-recycling systems or ecological engineering systems which depend on renewable resources rather than aquaculture systems which depend on fossil fuels, and be harmonized with the fishing fisheries by the sustainable use of renewable resources in the carrying capacity.

An application of MMS in precise inspection for safety and diagnosis of road tunnel (도로터널에서 MMS를 이용한 정밀안전진단 적용 사례)

  • Jinho Choo;Sejun Park;Dong-Seok Kim;Eun-Chul Noh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.113-128
    • /
    • 2024
  • Items of road tunnel PISD (Precise Inspection for Safety and Diagnosis) were reviewed and analyzed using newly enhanced MMS (Mobile Mapping System) technology. Possible items with MMS can be visual inspection, survey and non-destructive test, structural analysis, and maintenance plan. The resolution of 3D point cloud decreased when the vehicle speed of MMS is too fast while the calibration error increased when it is too slow. The speed measurement of 50 km/h is determined to be effective in this study. Although image resolution by MMS has a limit to evaluating the width of crack with high precision, it can be used as data to identify the status of facilities in the tunnel and determine whether they meet disaster prevention management code of tunnel. 3D point cloud with MMS can be applicable for matching of cross-section and also possible for the variation of longitudinal survey, which can intuitively check vehicle clearance throughout the road tunnel. Compared with the measurement of current PISD, number of test and location of survey is randomly sampled, the continuous measurement with MMS for environment condition can be effective and meaningful for precise estimation in various analysis.